期刊文献+

两性离子自组装仿生表面的制备、表征及抗黏附性能 被引量:6

Preparation,Characterization and Antibacterial Adhesion Performance of the Biomimetic Surfaces via Zwitterionic Self-assembly
下载PDF
导出
摘要 设计与合成了磺酸甜菜碱型的两性离子化合物:N,N-二甲基氨甲酸乙酯基丙基三乙氧基硅烷磺酸内盐(SiNNS),利用红外光谱(FTIR)和氢核磁共振波谱(1H NMR)对其分子组成与结构进行了表征.通过自组装技术将SiNNS分子构筑在玻璃基材表面,形成了模拟细胞外层膜的仿生表面.利用原子力显微镜(AFM)、X光电子能谱(XPS)和接触角测量仪对表面的形貌特征、化学组成和润湿性进行了表征.以空白玻璃为对照样品,研究了这一表面的防雾性能和抗细菌黏附性能.结果表明,所制备的两性离子自组装仿生表面具有超亲水性和水下超疏油特性,其水滴接触角为9.2°,水下油滴接触角接近180°;与对照样品相比,两性离子自组装表面具有优异的防雾性与抗细菌黏附性. A sulfobetaine zwitterionic compound, N, N-dimethylamino ethyl carbamate propyl triethoxysilane sulfonate (SiNNS), was designed and synthesized and its composition and molecular structure were characterized by means of FTIR and l H NMR spectroscopy. Furthermore, the biomimetic surface imitating the chemical features of cellular outer membrane were constructed via the self-assembly of SiNNS molecules on the hydroxylated glass surface. The morphology structure, chemical composition and wettability of the prepared biomimetic surface were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The antifogging and antibacterial adhesion performances of the biomimerle surface were investigated using an untreated glass surface as a control sample. The results indicate that the zwitterionic self-assembled biomimetic surface can possess superhydrophilicity with a water contact angle of 9.2° and underwater superoleophobicity with an oil contact angle of 175.6°. Compared to the corresponding control sample, the zwitterionic self-assembled biomimetic surface can exhibit an excellent antifogging property and an obvious antibacterial adhesion performance.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第7期1484-1491,共8页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50873039)资助~~
关键词 甜菜碱型两性离子 自组装 仿生表面 超亲水 抗细菌黏附性 Betaine-zwitterion Self-assembly Biomimetic surface Superhydrophilicity Antibacterialadhesion
  • 相关文献

参考文献29

  • 1刘红艳,周健.两性离子聚合物的生物应用[J].化学进展,2012,24(11):2187-2197. 被引量:11
  • 2Jacobs H., Wan Kim S., Blood Purification, 2008, 14(5), 357—372. 被引量:1
  • 3Priyananda P., Chen V., J. Membr. Sci., 2006, 273(1), 58—67. 被引量:1
  • 4Zwaal R. F. A., Comfurius P., van Deenen L. L. M., Nature, 1977, 268(7), 358—360. 被引量:1
  • 5Van Zoelen E. J., Zwaal R. F. A., Reuvers R. A., Biochimica et Biophysica Act, 1977, 464(3), 482—492. 被引量:1
  • 6Zwaal R. F. A., Hemker H. C., Pathophysiol. Haemo. T, 1982, 11(1), 12—39. 被引量:1
  • 7Hayward J. A., Chapman D., Biomaterials, 1984, 5(3), 135—142. 被引量:1
  • 8Xie Y., Liu M., Jiang S., Appl. Surf. Sci., 2012, 258(20), 8153—8159. 被引量:1
  • 9Shao Q., He Y., Jiang S.Y., J. Phys. Chem. B, 2011, 115(25), 8358—8368. 被引量:1
  • 10Hasegawa T., Iwasaki Y., Ishihara K., J. Biomed. Mater. Res., 2002, 63(3), 333—341. 被引量:1

二级参考文献68

共引文献19

同被引文献97

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部