期刊文献+

基于上三角域上的形状控制重心混合有理插值

Shape control in barycentric blending rational interpolation over triangular grids
下载PDF
导出
摘要 重心有理插值与Thiele型连分式插值相比,具有数值稳定性好、计算量小、有任意高的逼近阶等优点.同时,通过选择适当的权可以使得重心有理插值无极点、无不可达点.基于上三角域上的重心——牛顿二元混合有理插值,以Lebesgue常数最小为目标函数、偏导数的符号为约束条件建立了优化模型,求得最优插值权.此方法不仅可以插值未知函数而且可以有效对形状作局部控制.数值实例表明了新方法的效果. Barycentric rational interpolation possesses various advantages in comparison with Thieletype continued fraction, such as good numerical stability, small calculation and arbitrarily high approximation order. At the same time, barycentric rational interpolant had no poles and no unattainable points based on those chosen weights. In this paper, the barycentric-Newton blending rational interpolation was constructed based on the right triangular grid. The optimal model was established by minimizing the Lebesgue constant and using partial derivative, the optimal wights were obtained by solving the optimal model. The method could not only do the interpolation to unknown function but also have effective local control of shape. The numerical example was given to show the effectiveness of the new method.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第3期1-5,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60973050) 安徽省教育厅自然科学基金资助项目(KJ2009A50)
关键词 重心有理插值 LEBESGUE常数 偏导数 形状控制 barycentric rational interpolation Lebesgue constant the partial derivatives weights shape control
  • 相关文献

参考文献3

二级参考文献9

  • 1Berrut J. P., A formula for the error of finite sinc interpolation with an even number of nodes [J]. Numerical Algorithms, 2011, 56 (1): 143-157. 被引量:1
  • 2Nguyen H T, Cuyt A, Celis O S. Comonotone and coconvex rational interpolation and approximation [J]. Numer Algor, 2011, 58(1):1-21. 被引量:1
  • 3Nguyen H T, Cuyt A and Cells 0 S. Shape Control in Multivariate Barycentric Rational interpolation [J]. ICNAAM, 2010, 1281:543-548. 被引量:1
  • 4Michael S F, Kosinka J. Barycentric interpolation and mappings on smooth convex domains. [A] Proceedings of the 14th ACM Symposium on Solid and Physical Modeling[C].New York:2010,111-116. 被引量:1
  • 5Berrut J P, Mittelmann H D.Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval[J]. Computers & Mathematics with Applications, 1997, 33: 77-86. 被引量:1
  • 6Berrut J P. Linear rational interpolation of continuous function over an interval [A]. Mathematics of Computation [C]. W. Gautschi, ed., 1994, 48: 261-264. 被引量:1
  • 7Berrut J P, Bahensperger R, Mittclmann H D. Recent developments in barycentric rational interpolation[J]. Interpolation Series of Numerical Mathematics, 2005, 151:27-51. 被引量:1
  • 8Schneider C, Werner W. Some new aspects of rational interpolation [J].Math. Comp, 1986, 47(175):285-299. 被引量:1
  • 9Tan Jieqing(Hefei University of Technology, China).BIVARIATE BLENDING RATIONAL INTERPOLANTS[J].Analysis in Theory and Applications,1999,15(2):74-83. 被引量:30

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部