期刊文献+

Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010 被引量:20

Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010
原文传递
导出
摘要 The near-surface freeze/thaw cycle in cold regions plays a major role in the surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,the Community Land Model,Version 4 and a suite of high-resolution atmospheric data were used to investigate the changes in the near-surface soil freeze/thaw cycle in response to the warming on the Tibetan Plateau from1981 to 2010.The in situ observations-based validation showed that,considering the cause of scale mismatch in the comparison,the simulated soil temperature,freeze start and end dates,and freeze duration at the near-surface were reasonable.In response to the warming of the Tibetan Plateau at a rate of approximately 0.44°C decade-1,the freeze start-date became delayed at an area-mean rate of1.7 days decade-1,while the freeze end-date became advanced at an area-mean rate of 4.7 days decade-1.The delaying of the freeze start-date,which was combined with the advancing of the freeze end-date,resulted in a statistically significant shortening trend with respect to the freeze duration,at an area-mean rate of 6.4 days decade-1.Such changes would strongly affect the surface energy flux,hydrological processes,and vegetation dynamics.We also found that the rate of freeze-duration shortening at the near-surface soil layer was approximately 3.0 days decade-1lower than that at a depth of 1 m.This implied that the changes in soil freeze/thaw cycles at the near surface cannot be assumed to reflect the situation in deeper soil layers.The significant correlations between freeze duration and air temperature indicated that the shortening of the near-surface freeze duration was caused by the rise in air temperature,which occurred especially in spring,followed by autumn.These results can be used to reveal the laws governing the response of the near-surface freeze/thaw cycle to climate change and indicate related changes in permafrost. The near-surface freeze/thaw cycle in cold regions plays a major role in the surface energy budget, hydrological activity, and terrestrial ecosystems. In this study, the Community Land Model, Version 4 and a suite of high-resolution atmospheric data were used to investigate the changes in the near-surface soil freeze/thaw cycle in response to the warming on the Tibetan Plateau from 1981 to 2010. The in situ observations-based validation showed that, considering the cause of scale mismatch in the comparison, the simulated soil temperature, freeze start and end dates, and freeze duration at the near-surface were reasonable. In response to the warming of the Tibetan Plateau at a rate of approximately 0.44 ℃ decade-1, the freeze start-date became delayed at an area-mean rate of 1.7 days decade-1, while the freeze end-date became advanced at an area-mean rate of 4.7 days decade-1. The delaying of the freeze start-date, which was combined with the advancing of the freeze end-date, resulted in a statis- tically significant shortening trend with respect to the freeze duration, at an area-mean rate of 6.4 days decade-1. Such changes would strongly affect the surface energy flux, hydrological processes, and vegetation dynamics. We also found that the rate of freeze-duration shortening at the near-surface soil layer was approximately 3.0 days decade-1 lower than that at a depth of 1 m. This implied that the changes in soil freeze/thaw cycles at the near surface cannot be assumed to reflect the situation in deeper soil layers. The significant correlations between freeze duration and air temperature indicated that the shortening of the near-surface freeze duration was caused by the rise in air temperature, which occurred especially in spring, followed by autumn. These results can be used to reveal the laws governing the response of the near-surface freeze/thaw cycle to climate change and indicate related changes in permafrost.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2014年第20期2439-2448,共10页
基金 supported by the National Natural Science Foundation of China (41130103 and 41210007)
关键词 土壤冻结 青藏高原 近地表 解冻 周期 模拟 冷冻时间 陆地生态系统 Tibetan Plateau Freeze/thaw cycle Frozen ground Freeze duration Climate warming
  • 相关文献

参考文献11

二级参考文献126

共引文献453

同被引文献312

引证文献20

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部