期刊文献+

大脑前额叶多通道近红外光谱信号数据的分类鉴别 被引量:7

Discriminant analysis of multi-channel near-infrared spectroscopy signal data in the prefrontal lobe
下载PDF
导出
摘要 背景:精神分裂症主要是通过症候学的方法进行诊断,近年来通过神经影像技术与模式识别的结合对精神分裂症患者与正常人进行鉴别的研究已经引起人们的兴趣。目的:利用模式识别的方法对精神分裂症患者和正常人的大脑前额叶多通道近红外光谱信号数据进行分类鉴别,验证其可行性。方法:使用言语流畅性测验作为激活任务,采集精神分裂症患者和正常人的大脑前额叶的近红外光谱信号数据。对采集数据进行预处理后计算各通道均值作为特征,计算接收者操作特征的曲线下方面积对通道特征进行分类性能排序,使用支持向量机按性能排序的特征组合做分类,然后用留一验证法计算分类性能指标,验证分类能力。结果与结论:研究发现特征性能排序前8位的特征组合的准确度最高达到95.24%,并且这8个通道都位于右侧前额叶。推断右侧前额叶区域可能是影响精神分裂症患者的主要脑区,因此根据结果可以推断出近红外光谱数据通过与模式识别方法的结合可以成为辅助诊断精神分裂症病患者的一种手段。 BACKGROUND:Psychiatric disorders such as schizophrenia are largely diagnosed on symptomatology. Recently pattern recognition approaches to the analysis of neuroimaging data such as the classification of patients and healthy controls have attracted people’s interest. OBJECTIVE:To apply pattern recognition approaches to distinguish schizophrenia patients from healthy subjects with multi-channel prefrontal near-infrared spectroscopy signals, and to verify its feasibility. METHODS:The near-infrared spectroscopy data were measured in the bilateral prefrontal areas of schizophrenia patients and healthy subjects during the Verbal Fluency Test task. After preprocessing, we calculated their mean values for each channel, and ranked the channel features based on the area under curve of the Receiver Operator Characteristic. Then, we trained support vector machine on the combinative features and applied Leave-One-Out-Cross-Validation method to verify the classification ability. RESULTS AND CONCLUSION:Our study demonstrated that the combination of the top eight rank channel features could reach the classification accuracy up to 95.24%, and al these channels are located at the right lateral prefrontal cortex. It is inferred that, right lateral prefrontal cortex is the main dominant brain areas in schizophrenia patients;the near-infrared spectroscopy of right lateral prefrontal cortex is a potential means for assistant diagnosis of schizophrenia patients.
出处 《中国组织工程研究》 CAS CSCD 2014年第20期3190-3195,共6页 Chinese Journal of Tissue Engineering Research
基金 国家自然科学基金资助项目(61201066 61001159)~~
关键词 组织构建 组织工程 精神分裂症 近红外光谱 支持向量机 曲线下方面积 国家自然科学基金 schizophrenia optics and photonics prefrontal cortex hemorheology
  • 相关文献

参考文献39

  • 1Forbes NF, Carrick LA, MclntoshAM,et al.Working memory in schizophrenia: a meta-analysis.Psychol Med. 2009;39(6): 889-905. 被引量:1
  • 2lee J, Park SWorking memory impairments in schizophrenia: a meta-analysis.J Abnorm Psychol. 2005; 114(4 ):599-611. 被引量:1
  • 3Kay SR, Fiszbein A, Opler lA.The positive and negative syndrome scale (PANSS) for schizophrenia.Schizophr Bull. 1987;13(2):261-276. 被引量:1
  • 4World Health organization. The global burden of disease: 2004 update [RlOl]. (2008) [2012-10-16]. 被引量:1
  • 5Shenton ME, Dickey CC, Frumin M,et at, A review of MRI findings in schizophrenia.Schizophr Res. 2001 ;49(1-2):1-52. 被引量:1
  • 6Manoach DS, Gollub Rl, Benson ES,et al.Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Bioi Psychiatry. 2000;48(2):99-109. 被引量:1
  • 7Olabi B, Ellison-Wright I, Mcintosh AM,et al. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Bioi Psychiatry. 2011 ;70(1 ):88-96. 被引量:1
  • 8Hoptman MJ, Zuo XN, Butler PD,et al.Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study.Schizophr Res. 2010;117(1): 13-20. 被引量:1
  • 9Brune M, Ozglirdal S, Ansorge N,et al.An fMRI study of "theory of mind" in at-risk states of psychosis: comparison with manifest schizophrenia and healthy controls.Neuroimage. 2011 ;55(1 ):329-337. 被引量:1
  • 10Nieuwenhuis M, van Haren NE, Hulshoff Pol HE,et al.Classification of schizophrenia patients and healthy controls from structural MR[ scans in two large independent samples.Neuroimage. 2012;61 (3):606-612. 被引量:1

二级参考文献10

  • 1王军臣,施达仁,符雪莲,卢婉平,石凤娟,鲁昌立.肺类癌型微小瘤的临床病理及其形态发生分析[J].中华病理学杂志,2003,32(4):350-353. 被引量:15
  • 2王化,唐光健.多层螺旋CT在肺结节诊断中的应用及展望[J].国外医学(临床放射学分册),2005,28(6):402-405. 被引量:8
  • 3International early lung cancer action program investigators[J]. N Engl J Med, 2006, 355: 1763-71. 被引量:1
  • 4Marten K, Seyfarth T, Auer F, et al. Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists[J].Eur Radiol, 2004. 14: 1930-8. 被引量:1
  • 5Farag A, EI-Baz A, Gimelfarb GG, et al. Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates [C]. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2004: 856-64. 被引量:1
  • 6Gurean MN, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system [J]. Med Phys, 2002, 29(11): 2552-8. 被引量:1
  • 7Armato III SG, Altman MB. Automated lung nodule classification following automated nodule detection on CT: A serial approach [J].Med Phys, 2003, 30(6): 1188-97. 被引量:1
  • 8Suzuki K, Armato SG. Massive training artificial neural network (MTANN) for reduction of false positive in computerized detection of lung nodules in low-dose computed tomography [J].Med Phys, 2003, 30(7): 1602-17. 被引量:1
  • 9曹蕾,占杰,余晓锷,陈武凡.基于自动阈值的CT图像快速肺实质分割算法[J].计算机工程与应用,2008,44(12):178-181. 被引量:26
  • 10曹蕾,路利军,杨蕊梦,陈武凡.基于区域增长的肺结节自适应形态分割[J].南方医科大学学报,2008,28(12):2109-2112. 被引量:8

共引文献8

同被引文献93

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部