摘要
主要考虑在半轴上Camassa-Holm方程解的动量密度紧支集大小的估计,方法是根据区间长度与区间特征值的关系,通过估计第一Dirichlet特征值来估计动量密度紧支集的长度.因为知道动量密度紧支集外解的性态,所以通过估计动量密度支集的大小可以得到方程解的更多信息.
The paper consider the bounds for the size of the support of a compactly supported momentum density of the Camassa-Holm equation on the half-line. This is achieved by estimating the first Dirichlet eigenvalue of the support, according to the relations between the eigenvalues and the geometric properties of a domain. Because the behavior of the solution outside the support of the momentum density is known. By estimating the size of the momentum density to obtain more information on the solution.
出处
《纯粹数学与应用数学》
CSCD
2014年第3期264-270,共7页
Pure and Applied Mathematics