期刊文献+

富氧燃烧气氛对低碳钢氧化过程的影响

Effects of Oxygen-enriched Combustion Atmosphere on Oxidation Process of Lowcarbon Steel
下载PDF
导出
摘要 针对富氧燃烧加热炉内钢坯氧化烧损问题,基于氧化机理分析,建立低碳钢氧化动力学模型,实验验证该模型能较好定量描述各种影响因素与氧化量之间的关系。对钢坯在不同富氧燃烧气氛下的恒温与变温氧化过程进行模拟。结果表明:CO2/H2O的氧化作用随温度提高而增强,在1000℃以下,助燃气氧浓度对钢坯氧化无明显影响,在1000℃以上,随助燃气氧浓度增加,钢坯氧化加剧,且在低烟气过剩氧浓度下增加明显。温度与烟气过剩氧浓度是影响钢坯氧化的主要因素,因此在富氧燃烧炉中采用低氧快速加热可降低钢坯的氧化烧损。 The problem of oxidation of billet in heating furnace with oxygen-enriched combustion requires more attention. The oxidation kinetics model of low carbon steel is set up, based on the analysis of oxidation mechanism. The experiments verify that the model can quantitatively describe the relationship between various influence factors and amount of oxide. The oxidation process of billet in different oxygen-enriched combustion atmosphere under constant temperature and variable temperature oxidation process was simulated. The results show that the oxidation of CO2 / H2O strengthens with temperature increasing. Oxygen concentration of oxidant gas has no significant effects on the oxidation of billet below 1000 ℃, meanwhile, above 1000 ℃, the oxidation of billet strengthens along with oxygen concentration of oxidant gas increasing, and significantly increases under low excess oxygen concentration of flue gas. Visible temperature and excess oxygen concentration of flue gas are the main factors for influencing the oxidation of billet. So the strategy of low oxygen rapid heating can reduce the oxidation of billet in the heating furnace with oxygen-enriched combustion.
出处 《热加工工艺》 CSCD 北大核心 2014年第12期62-65,68,共5页 Hot Working Technology
基金 中央高校基本科研业务费专项资金(FRF-SD-12-013A)
关键词 富氧燃烧 加热炉 氧化烧损 数值模拟 oxygen-enriched combustion heating furnace oxidation numerical simulation
  • 引文网络
  • 相关文献

参考文献3

二级参考文献21

  • 1杨富,李为民,任永宁.超临界、超超临界锅炉用钢[J].电力设备,2004,5(10):41-46. 被引量:50
  • 2刘江南,赵彦芬,耿波,王正品,要玉宏,石崇哲.T91钢高温高压水蒸汽氧化膜微观组织结构研究[J].铸造技术,2005,26(3):202-204. 被引量:15
  • 3Li Zongyu, Barr P V, Brimaeombe J K. Computer Simulation of the Slab Reheating Furnace [J]. Canadian Metallurgical Quarterly, 1988, 27(3) : 187. 被引量:1
  • 4Chapman K S, Ramadhyani S, Viskanta R. Two-Dimensional Modeling and Parametric Studies of Heat Transfer in a Direct- Fired Furnace With Impinging Jets [J]. Combustion Science and Technology, 1994, 97(1/2/3): 99. 被引量:1
  • 5Kim Jong Gyu, Huh Kang Y. Prediction of Transient Slab Temperature Distribution in the Re-Heating Furnace of a Walking Beam Type for Rolling of Steel Slabs[J].ISIJ Int, 2000, 40(11): 1115. 被引量:1
  • 6Zhang C, Ishii T, Sugiyama S. Numerical Modeling of the Thermal Performance of Regenerative Slab Reheat Furnaces [J].Numerical Heat Transfer Part A, 1997, 32(6): 613. 被引量:1
  • 7Chen W H, Chung Y C, Liu J L. Analysis on Energy Consumption and Performance of Reheating Furnaces in a Hot Strip Mill [J]. Int Commun Heat Mass Transfer, 2005, 32(5): 695. 被引量:1
  • 8YangBY, WuCY, HoCJ, HoTY. A Heat Transfer Model for Skidmark Formation on Slab in a Reheating Furnace [J]. J Mater Process Manufacture Sci, 1995, 3(10) 277. 被引量:1
  • 9Harish J, Dutta P. Heat Transfer Analysis of Pusher Type Reheat Furnace [J].Ironmaking Steelmaking 2005, 32(2) : 151. 被引量:1
  • 10Baukal Jr Charles E, Gershtein Vladimir, Li Xianming Jimmy. Computational Fluid Dynamics in Industrial Combustion [M]. Boca Raton, UAS: CRC Press, 2000. 被引量:1

共引文献13

相关主题

;
使用帮助 返回顶部