期刊文献+

改进小波阈值法用于心电信号去噪 被引量:7

An Improved Wavelet Threshold Algorithm for ECG Denoising
原文传递
导出
摘要 由于心电图(ECG)信号的特点以及在采集过程中所受到的干扰影响,ECG信号去噪已成为ECG信号智能分析的基础。本文在基于小波变换方法的基础上,对阈值参数进行改进,提出了与噪声更加匹配的阈值表达式。利用改进的阈值对离散分解后的小波系数进行处理,通过小波逆变换重构信号,能够更加准确地去除噪声的小波系数,保留更多原信号小波系数。采用MIT-BIH中的数据进行实验,结果表明,改进方法较之现有小波阈值去噪方法,能够达到更好的去噪效果。 Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually inter- fered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate thresh- old expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parame- ters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the tradition- al ones.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第3期511-515,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61203160 61074175) 河北省自然科学基金资助项目(F2011201159)
关键词 心电图信号 去噪 小波变换 边带 阈值 electrocardiogram signal denoising wavelet transform subhand threshold
  • 相关文献

参考文献24

  • 1BI.ANCO-VELASCO M, WENG B, BARNER K E. A new ECG enhancement algorithm for stress ECG tests[C]//Com- puters in Cardiology. Valencia: 2006: 917-920. 被引量:1
  • 2YAN H, LI Y J. Electrocardiogram analysis based on the Karhunen-Lorve transorm [C]//Proceedings of the 3rd In- ternational Conference on Biomedical Engineering and Infor- matics. Yantai: 2010: 887-890. 被引量:1
  • 3VETTERI.1 M. Wavelets, approximation, and compression[J]. IEEESignalProcessMag, 2001, 18(5): 59-73. 被引量:1
  • 4POPESCU M, CRISTEA P, BEZERIANOS A. High resolu- tion ECG filtering using adrptive Bayesian wavelet shrinkage [C]//Computers in Cardiology. Cleveland, OH, USA: 1998: 401-404. 被引量:1
  • 5ALMENAR V, AI.BIOL A. A new adaptive scheme for ECG enhancement [J]. Signal Process. , 1999, 75(9) : 253-263. 被引量:1
  • 6万相奎,张军.基于小波神经网络的心电信号滤波研究[J].生物医学工程学杂志,2010,27(6):1197-1201. 被引量:5
  • 7张翔,周严.基于自适应滤波的心电图中呼吸干扰的抑制[J].生物医学工程学杂志,2011,28(1):58-62. 被引量:6
  • 8ALFAOURI M, DAQROUQ K. ECG signal denoising by wavelet transform thresholding [J]. Am J Appl Sci, 2008, 5 (3) : 276-281. 被引量:1
  • 9SAYAD1 O, SHAMSOI.LAHI M B. ECG denoising with a- daptive bionic wavelet transform [C]//Proceedings of 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York, NY: 2006: 6597- 6600. 被引量:1
  • 10BARROS A K, MANSOUR A, OHNISHI N. Removing ar- tifacts from electrocardiographic signals using independent components analysis [J]. Neurocomputing, 1998, 22 (1-3) : 173-186. 被引量:1

二级参考文献32

  • 1王和平,康景利.一种基于小波模极大值的信号去噪算法[J].系统工程与电子技术,2005,27(11):1876-1877. 被引量:11
  • 2房文静,范宜仁,邓少贵,李霞.测井多尺度分析方法中最优小波基的选取[J].煤田地质与勘探,2006,34(4):71-73. 被引量:13
  • 3张泾周,张光磊,戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志,2006,23(5):977-980. 被引量:12
  • 4Cherkassky V,Kihs S. Comparison of Wavelet Thresholding Methods for Denoising ECG Signals[M]//Lecture Notes in Computer Science. London:Springer-Verlag, 2001,2130:625-629. 被引量:1
  • 5Donald B Percival,Andrew T Walden.时间序列分析的小波方法[M].程正兴,王郑耀,全黎,译.北京:机械工业出版社,2006. 被引量:1
  • 6VAN ALSTE J A, SCHILDER T S. Removal of baseline wander and power-line interference from ECG by an efficient FIR filter with a reduced number of taps[J]. IEEE Trans, BME-32 ,1985 : 1052-1060. 被引量:1
  • 7LIMACHER R. Removal of power line interference from the ECG signal by an adaptive digital filter[J]. In Proc. of Europe- an Telemetry Conference ( ETC-1996 ), Gramish-Part, 1996 : 300-309. 被引量:1
  • 8ESPOSITO A, D' ANDRIA P. An adaptive learning algo- rithm for ECG noise and baseline drift removal[J]. Neural nets,2003,2859(10) : 139-147. 被引量:1
  • 9XU L S,ZHANG D,WANG K Q. Wavelet-based cascaded a- daptive filter for removing baseline drift in pulse waveforms [J]. IEEE Trans on Biomed Eng, 2005,53(11) : 1973-1975. 被引量:1
  • 10MATEO J, SANCHEZ C, ALCARAZ R, et al. Neural net- works based approach to remove baseline drift in biomedical signals[J]. IFMBE Proceedings, 2007,16 : 90-93. 被引量:1

共引文献26

同被引文献55

  • 1中国心血管健康与疾病报告编写组,王增武,胡盛寿.中国心血管健康与疾病报告2019概要[J].中华老年病研究电子杂志,2020(4):4-15. 被引量:928
  • 2LEVKOV C, MIHOV G, IVANOV R, et al. Removal of power-line interference from the ECG: a review of the sub traction procedure [J]- BioMedical Engineering OnLine,2005,4:50-68. 被引量:1
  • 3STARCK J L, ELAD M, DONOHO D. Redundant multi- scale transforms and their application for morphological com- ponent analysis [J]. Advances in Imaging and Electron Phys ics, 2004, 132(82): 287-348. 被引量:1
  • 4ABRIAL P, MOUDDEN Y, STARCK J I., et al. Morpho logical component analysis and inpainting on the sphere: ap- plication in physics and astrophysics [J]. Journal of Fourier Analysis and Applications, 2007, 13(6)= 729-748. 被引量:1
  • 5BRUCE A, SARI)Y S, TSENC- P. Block coordinate relaxa tion method for nonparametric signal denoising [C]//Proceed- ings of International Society for Optical Engineering (SHE). Orlando, FI., USA.- 1998, 3391:75 86. 被引量:1
  • 6HUANG N E, ZHENG S, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis [J]. Proc Roy Soc London A, 1998, 454: 903-995. 被引量:1
  • 7WU Z H, HUANG N E. Ensemble empirical mode dccompo- sition a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1 41. 被引量:1
  • 8李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152. 被引量:55
  • 9张雪,王海燕,李保军.临床心电信号工频干扰小波去噪方法对比分析[J].计算机测量与控制,2010,18(4):902-905. 被引量:8
  • 10彭宇,王建民,彭喜元.基于回声状态网络的时间序列预测方法研究[J].电子学报,2010,38(B02):148-154. 被引量:45

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部