期刊文献+

一类二阶KdV类型水波方程的多辛Preissmann格式 被引量:1

Multi-symplectic Preissmann Methods for a Two Order Wave Equation of KdV Type
原文传递
导出
摘要 二阶KdV类型水波方程作为一类重要的非线性方程有着许多广泛的应用前景.通过引入正则动量,验证了二阶KdV类型的水波方程具有两种Hamilton系统多辛格式,并证实此格式具有多辛守恒律、局部能量守恒律和动量守恒律.基于Hamilton空间体系的多辛理论研究了二阶KdV类型水波方程的数值解法,利用中心Preissmann方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性. A two order wave equation of kdv type, a typical nonlinear wave equation, has broad application prospect. With the canonical momenta, two new multi-symplectic formulations for the two order wave equation of KdV type are presented, and the associated local conservation laws are shown. A two order wave equation of kdv type was sdudied based on the multi-symplectic theory in Hamilton space.The multi-symplectic formulations of a two order wave equation of kdv type with several conservation laws are presented. The symplectic Preissmann method is used to discretize the formulations. The numerical experiment is given, and the results verify the efficiency of the multi-symplectic scheme.
出处 《应用数学学报》 CSCD 北大核心 2014年第3期393-406,共14页 Acta Mathematicae Applicatae Sinica
基金 云南省教育厅基金(2013Y106)资助项目
关键词 Hamiton系统 PREISSMANN格式 多辛算法 二阶KdV类型水波方程 Hamilton space multi-symplectic theory preissmann method a two order wave equation of KdV type
  • 相关文献

参考文献2

二级参考文献15

  • 1Tzirtzilakis E,Xenos M,Marinakis V,et al.Interactions and stability of solitary waves in shallow water[J].Chaos,Solitons and Fractals,2002,14(1):87-95. 被引量:1
  • 2Tzirtzilakis E,Marinakis V,Apokis C,et al.Soliton-like solutions of higher order wave equations of the Korteweg-de-Vries type[J].J Math Phys,2002,43(12):6151-66161. 被引量:1
  • 3Fokas A s.On a class of physically important integralequations[J].Physica D,1995,87(1/4):145-150. 被引量:1
  • 4LONG Yao,RUI Wei-guo,HE Bin.Travelling wave solutions for a higher order wave equations of KdV type(I)[J].Chaos,Solitons and Fractals,2005,23(2):469-475. 被引量:1
  • 5LI Ji-bin,DAI Hui-hui.On the studies of sigular travelling wave equations[A].Dynamical System Approach[C].Beijing:Science Press,2007. 被引量:1
  • 6Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981. 被引量:1
  • 7Guckenheimer J,Holmes P J.Nonlinear Oscillations,Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1983. 被引量:1
  • 8Perko L.Differential Equations and Dynamical Systems[M].New York:Springer-Verlag,1991. 被引量:1
  • 9Li Y A,Olver P J.Convergence of solitary-wave solutionsin a perturbed bi-Hamiltonian dynamical system I:Compactons and peakons[J].Discrete and Continuous Dynamical Systems,1997,3(3):419-432. 被引量:1
  • 10Li Y A,Olver P J.Convergence of solitary-wave solutionsin a perturbed bi-Hamiltonian dynamical system II:Complexanalytic behaviour and convergence to non-analytic solutions[J].Discrete and Continuous Dynamical Systems,1998,4(1):159-191. 被引量:1

共引文献17

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部