期刊文献+

人眼定位与AdaBoost Gabor滤波的人脸检测算法 被引量:6

Face detection based on eye location and AdaBoost Gabor filter
下载PDF
导出
摘要 一般人脸检测率要受到光照的影响,而Gabor小波具有良好的生物视觉特性,对光照不敏感;在用AdaBoost算法训练分类器时,如果人脸在图像中位置相对固定,则分类器的分类能力会增强。为了解决光照问题对检测率的影响,提出人眼定位与AdaBoost Gabor滤波算法相结合的人脸检测方法。采用AdaBoost方法、Hough变换与直接最小二乘法拟合椭圆的方法确定眼睛的区域,并定位瞳孔与眼睑,根据五眼三庭知识得到人脸的区域,最后用AdaBoost Gabor滤波算法训练级联强分类器,并用此级联强分类器进行判别是否为人脸。在Yale、CMU Frontal Face等人脸库上进行实验,实验表明该方法不仅虚警率低,而且人脸检测率高。 Face detection rate is always affected by illumination. However the Gabor wavelet has good biological visual characteristic,and it is insensitive to illumination. In addition,if the position of the face was relatively fixed in images,the ability of the classifiers would be enhanced when classifiers were trained with Adaboost method. In order to increase the face detection rate when face image was affected by illumination,this paper proposed the new face detection method based on the human eye location and AdaBoost Gabor filter. Firstly,it determined eye region with AdaBoost method,Hough transform and direct least squares method. Secondly,it located the pupil and eyelid of the eye. Then,it obtained face region according to the knowledge of the face that its width was five eyes and its high was three court. Finally,it determined face with the cascade strong classifiers which were trained by AdaBoost Gabor filter algorithm. Experiments are executed in Yale,CMU Frontal Face database,and so on. Experiments show that not only false alarm rate with this method is lower,but also face detection rate is higher than other methods.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2201-2204,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61203056) 淮阴工学院基金资助项目(HGB1202) 淮安市工业项目(HAG2013064)
关键词 人眼定位 HOUGH变换 直接最小二乘法 ADABOOST GABOR滤波 eye location Hough transform direct least squares method AdaBoost Gabor filter
  • 相关文献

参考文献12

二级参考文献85

  • 1何光宏,潘英俊,吴芳.基于肤色特征和动态聚类的彩色人脸检测[J].光电工程,2004,31(11):47-50. 被引量:4
  • 2薛程,王士同.一种新的不基于Hough变换的随机椭圆检测算法[J].微计算机信息,2006,22(01S):265-268. 被引量:13
  • 3孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 4丘维声.解析几何[M].北京:北京大学出版社,1999.200. 被引量:10
  • 5DAUGMAN J G, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual corti- cal filters[ J]. J Optical Soc Amer, 1985,2 (7) : 1160-1169. 被引量:1
  • 6LIU C J,WECHSLER H. Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition [ J ]. IEEE Trans on Image Processing,2002,11 (4) :467-476. 被引量:1
  • 7SHEN L, BAIL. MutualBoost learning for selecting Gabor features for face recognition [ J ]. Pattern Recognition Letters, .2006,27 ( 15 ) : 1758-1767. 被引量:1
  • 8DO M N, VETTERLI M. Wavelet-based texture retrieval using gene- ralized Gaussian density and Kullback-Leibler distance [ J ]. IEEE Trans on Image Processing ,2002,11 ( 2 ) : 146-158. 被引量:1
  • 9HE X F, YAN S C, HU Y X, et al. Face recognition using Laplacian- faces[J]. IEEE Trans on PAMI,2005,27(3 ):328-340. 被引量:1
  • 10TURK M, PENTLAND A. Face recognition using Eigenfaces [ C ]// Proc of IEEE Conference on Computer Vision and Pattern Recogni- tion. Maui : IEEE Press, 1991:586-591. 被引量:1

共引文献91

同被引文献51

  • 1孙建明,姚依妮,李昭,林月华.面向超市环境的眼动追踪系统设计[J].包装世界,2018,0(5):11-12. 被引量:1
  • 2陈立君,王克奇,王辉.基于BP神经网络木材纹理分类的研究[J].森林工程,2007,23(1):40-42. 被引量:13
  • 3OJALA T, PIETIKINEN M. Comparative Study of Texture Meas- ures with Classification based on Feature Distributions [ J ]. Pat- tern Recognition, 1996,29 ( 1 ) : 51 - 59. 被引量:1
  • 4OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution Gray-scale and Rotation lnvariant Texture Classification with lcal Binary Patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971 -987. 被引量:1
  • 5OJALA T, PIETIKAINEN M, MAENPAA T. A Generalized Local Binary Pattern Operator for Muhiresolution Gray Scale and Rotation Invariant Texture Classification [ J ]. Lecture Notes in Computer Science Volume, 2013:399 -408. 被引量:1
  • 6SCHAPIRE R E. A Brief Introduction to Boosting [ J ]. LICAI International Joint Conference on Artificial Intelligence, 1999, 2: 1401 - 1406. 被引量:1
  • 7MUKHERJEE I, RUDIN C, SCHAPIRE R E. The Rate of Con- vergence of Adaboost [ J ]. Journal of Machine Learning Re- search-Proceedings of the 24th Annual Conference on Learning Theory. 2011,19:537 - 557. 被引量:1
  • 8CYNTHIA R, DAUBECHIES I, SCHAPIRE R E. The Dynamics of AdaBoost : Cyclic Behavior and Convergence of Margins [ J ]. Journal of Machine Learning Research ,2004,5 : 1557 - 1595. 被引量:1
  • 9YONG X X, ZHEN X, RAMADGE P, et al. Speed and Sparsity of Regularized Boosting [J ]. Journal of Machine Learning Re- search-Proceedings Track, 2009,5 : 615 - 622. 被引量:1
  • 10KUMAR V, MEHTA M. Face recognition using line edge map[J]. Int J Multidiscipl Curr Res, 2014,7(2) :59-61. 被引量:1

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部