期刊文献+

基于在线社交网络的动态消息传播模型 被引量:16

Dynamic information spreading model based on online social network
下载PDF
导出
摘要 传统传播模型较难描述在线社交网络中的复杂活跃模式以及节点间的拓扑差异,并且其接触式的传播者退化方式也与现实不符。针对理论模型模拟与现实消息传播的不符,提出一个基于在线社交网络的动态消息传播模型D-SIR。该模型考虑了在线社交网络中影响消息传播的一些实际因素,引入基于传播延迟的退化方式使传播者自发地退化成免疫者,动态指定节点的权威度和免疫力以适应非均质网络,并考虑接收增强信号效应以及外部社会加强效果。在采集的新浪微博真实传播网络数据中,通过参数变化的传播仿真实验验证了D-SIR模型可以有效反映在线社交网络的现实传播情形,并且较传统模型更具灵活性及可扩展性。 Traditional spreading models have difficulties in descripting the complex activity patterns and the topological differences between nodes in online social networks, and the contact-based spreader annihilation mechanisms in these models do not fit with the reality. To filling the gap between spreading simulations of theoretical model and realities of information spreading, a new dynamic information spreading model (D-SIR) based on online social network was proposed. With consideration of some practical factors in information dissemination process, this model introduced the time delay annihilation mechanism that spreaders changed to stiflers spontaneously and the dynamic authority and resistance of nodes mechanism to apply to inhomogeneous networks, and considered the receiving reinforced signal effect and the social reinforcement. With the variances of parameters, the simulations on the real-world online social network which is constructed by crawled Sina microblog data verify that D-SIR model can reflect the real spreading situation in online social network. And compared to the traditional spreading model, the new model is more flexible and extensible.
出处 《计算机应用》 CSCD 北大核心 2014年第7期1960-1963,共4页 journal of Computer Applications
基金 广东省自然科学基金资助项目(10451009001004804)
关键词 在线社交网络 消息传播模型 建模仿真 传播模型 复杂网络 online social network information spreading model modeling and simulation spreading model complex network
  • 相关文献

参考文献16

  • 1ZHAO L,WANG J,CHEN Y,et al.SIHR rumor spreading model in social networks[J].Physica A,2012,391(7):2444-2453. 被引量:1
  • 2MORENO Y,NEKOVEE M,PACHECO A F.Dynamics of rumor spreading in complex networks[J].Physical Review E,2004,69(6):066130. 被引量:1
  • 3NEKOVEE M,MORENO Y,BIANCONI G,et al.Theory of rumour spreading in complex social networks[J].Physica A,2007,374(1):457-70. 被引量:1
  • 4BORGE-HOLTHOEFER J,MELONI S,GONALVES B,et al.Emergence of influential spreaders in modified rumor models[J].Journal of Statistical Physics,2013,151(1/2):383-393. 被引量:1
  • 5ZHAO L,QIU X,WANG X,et al.Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks[J].Physica A,2012,392(4):987-94. 被引量:1
  • 6LYU L,CHEN D B,ZHOU T.The small world yields the most effective information spreading[J].New Journal of Physics,2011,13(12):123005. 被引量:1
  • 7张彦超,刘云,张海峰,程辉,熊菲.基于在线社交网络的信息传播模型[J].物理学报,2011,60(5):60-66. 被引量:153
  • 8王辉,韩江洪,邓林,程克勤.基于移动社交网络的谣言传播动力学研究[J].物理学报,2013,62(11):96-107. 被引量:80
  • 9ZHAO L,XIE W,GAO H O,et al.A rumor spreading model with variable forgetting rate[J].Physica A,2013,392(23):6146-6154. 被引量:1
  • 10XU X J,CHEN G.The SIS model with time delay on complex networks[J].International Journal of Bifurcation and Chaos,2009,19(2):623-628. 被引量:1

二级参考文献27

  • 1Wikipedia,http://en.wikipedia.Org//wiki. 被引量:1
  • 2Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501 (in Chinese). 被引量:1
  • 3Wang Y X, Qiao X Q, Li X F, Meng L M 2010 Chinese Journal of Computers 33 2126 (in Chinese). 被引量:1
  • 4Adams B, Phung D, Venkatesh S 2008 ACM Transactionson Mutimedia Computing Comunications and. 被引量:1
  • 5Ugander J, Karrer B, Backstrom L, Marlow C 2011 available: https://www.facebook.com, Novemb. 被引量:1
  • 6Watts D J, Strogatz S H 1998 Nature 393. 被引量:1
  • 7Barabasi A L, Albert R 1999 Science 286 509. 被引量:1
  • 8Centola D 2010 Science 329 1194. 被引量:1
  • 9Li X, Wang X F, Xu D 2007 Acta Phys. Sin. 56 1313 (in Chinese). 被引量:1
  • 10Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Physics Reports 424 175. 被引量:1

共引文献208

同被引文献126

引证文献16

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部