期刊文献+

联合稀疏表示的双次诱发电位提取算法 被引量:1

Double-Trial Extraction of Evoked Potentials with Joint Sparse Representation
下载PDF
导出
摘要 诱发电位少次提取对于研究大脑活动规律以及临床诊断等具有重要意义.根据脑电信号的特点,本文提出一种基于联合稀疏表示的双次诱发电位信号估计算法.利用诱发电位信号的准周期性和自发脑电信号的随机性,该算法将脑电信号看作为相似成分和相异成分的叠加.神经系统通过相同刺激产生的诱发电位主要在潜伏期和波幅两方面发生变化,因此该算法利用平均诱发电位进行建模,得到稀疏字典,通过联合稀疏表示算法实现双次诱发电位信号的提取.实验结果表明,该算法和其他算法相比获得了更好的效果. The few-trial extraction of evoked potentials is very meaningful to the study of brain and many clinical applica-tions .According to the characteristics of Electroencephalogram signal ,this paper presents a novel algorithm for double-trial extract-ing evoked potentials based on joint sparse representation .Taking advantage of the quasi-periodic structure of evoked potentials and randomness of ongoing spontaneous Electroencephalogram ,the observations of evoked potentials are considered as the superposition of the similar components and the different components .Evoked potential obtained by same stimulation of the nerves changes only in latency and scale parameters .Our method uses the average evoked potentials to model and construct the sparse dictionary ,so the double-trial extraction of evoked potentials can be achieved with joint sparse representation .Experiment results show that the per-formance of the proposed method is better than that of other methods .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第5期852-857,共6页 Acta Electronica Sinica
基金 江苏省高校自然科学基金(No.13KJB510010) 江苏省自然科学基金(No.BK20130230)
关键词 诱发电位双次提取 联合稀疏表示 字典构造 脑电信号 double-trial extraction of evoked potentials joint sparse representation construction of dictionary electroen-cephalogram
  • 相关文献

参考文献18

  • 1Costa M H. Estimation of the noise autocorrelation function in auditory evoked potential applications [ J ]. Biomedical Signal Processin: and Control,2012,7(5 ) :542 - 548. 被引量:1
  • 2陈洪波,李蓓蕾,陈真诚.基于ICA的脑电信号P300少次自动提取[J].电子学报,2012,40(6):1257-1262. 被引量:9
  • 3王登,苗夺谦,王睿智.一种新的基于小波包分解的EEG特征抽取与识别方法研究[J].电子学报,2013,41(1):193-198. 被引量:43
  • 4Georgiadis S D, et. al. Single-trial dynamical estimation of event-related potentials: A Kalman filter-based approach[ J]. IEEE. Transaction Biomedical Engineering, 2005,52 (8) : 1397 - 1406. 被引量:1
  • 5Hoppe U, Weiss S, Stewart R W, et. al. An automatic sequecial evoked potential reconsmmtion method for cortical auditory e- voked potentials [ J ]. IEEE Transaction Biomedical Engineer- ing,2001,48(2) : 154 - 164. 被引量:1
  • 6Lange D H,Pratt H,Indar G F. Modeling and estimation of sin- gle evoked brain potential components [ J ]. IEEE Transaction Biomedical Engineering, 1997,44(9) : 791 - 799. 被引量:1
  • 7Garoosi V, Jansen B H. Development and evaluation of the piecewise Prony method for evoked potential analysis[ J]. [FEE Transaction Biomedical Engineering, 2000, 47 ( 12 ) : 1549 - 1554. 被引量:1
  • 8Iyer D, Zouridakis G. Single-lrial evoked potential estimation: Comparison between independent component analysis and wavelet denoising[ J]. Clinical Neurophysiology, 2007,118 (3) : 495 - 504. 被引量:1
  • 9Causevic E, Morley R E, Wickerhauser M V, et. al. Fast wavelet estimation of weak biosignals[ J]. IEEE Transaction on Biomedical Engineering, 2005,52(6) : 1021 - 1032. 被引量:1
  • 10Markazi S A, et. al. Wavelet filtering of the P300 component in event-related potentials[ A ]. New York City, USA: Pro-ceedings of the 28th IEEE EMBS Annual International Confer- ence[ C]. Piscataway, NJ: IEEE, 2006.1 - 4. 被引量:1

二级参考文献13

共引文献50

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部