期刊文献+

基于稳定裕度的控制系统双回路增益优化方法

Double-loop gain optimization method for control system based on stability margin
原文传递
导出
摘要 针对控制系统增益手工优化方法效率低且稳定裕度无法保证的问题,提出了一种双回路增益优化方法。将增益优化视为系统增益与频域稳定裕度之间的非线性最优化问题,基于频域稳定裕度指标构造目标函数,并采用广义拉格朗日乘子法将有约束的非线性最优化问题转化为无约束最优化问题。外回路通过罚因子和拉格朗日乘子逐步迭代来调整目标函数,内回路则基于单纯形算法直接求解无约束最优化问题,搜索控制系统增益最优解。仿真结果表明,该算法可有效改善控制系统的鲁棒性和稳定性,提高了传统手工增益优化方法的效率,可应用于多种研究对象,有一定的工程应用价值。 For the problem of manual parameter tuning for controller, such as low efficiency and unsurestability margin, a double-loop approach of gain tuning is proposed for the nonlinear optimal problem be-tween control gain and stability margin. The objective function based on stability margin was constructed,and the nonlinear optimal problem with multi-constraints was simplified into that with no constraintthroughgeneralized Lagrange method. The external loop was used to modify the penalty factor and La-grange multiplier through step iterative method. The optimal gain of control system was obtained by sol-ving the no-constraint optimal problem based on simplex method in the internal loop. The simulation re-suits show that the robustness and stability of control system and the efficiency of manual parameter tuningcan be improved effectively by the method, which can be applied to diverse object of study and possessgreat practical value in engineering.
出处 《飞行力学》 CSCD 北大核心 2014年第3期262-265,269,共5页 Flight Dynamics
关键词 增益调参 非线性最优化 单纯形 拉格朗日乘子 双回路 gain tuning nonlinear optimal simplex Lagrange multiplier double-loop
  • 相关文献

参考文献9

  • 1Herrero J M, Blasco X, Martinez M, et al. Optimal PID tuning with genetic algorithms for non-linear process mod- els[ C ]//IFAC 15th Triennial World Congress. Barcelo- na, Spain ,2002 : 1009-1014. 被引量:1
  • 2Aytekin Bagis. Tabu search algorithm based PID controller tuning for desired system specifications [ J]. Journal of the Franklin Institute, 2011,348 ( 10 ) : 2795-2812. 被引量:1
  • 3尹宏鹏,柴毅.基于蚁群算法的PID控制参数优化[J].计算机工程与应用,2007,43(17):4-7. 被引量:24
  • 4赵卫华..基于神经网络参数优化的PID控制研究[D].中北大学,2008:
  • 5陈怀民,徐奎,王鹏,吴成富.基于无尾飞机横侧向控制律参数优化设计的一种方法[J].西北工业大学学报,2007,25(4):585-589. 被引量:5
  • 6Awouda A E A, Bin Mamat R. Refine PID tuning rule u- sing ITAE criteria[ C]//Computer and Automation Engi- neering ( ICCAE ), 2010 the 2nd International Confer- ence. Singapore,2010 : 171-176. 被引量:1
  • 7张民,陈欣,陆宇平.基于改进PSO算法的导弹控制参数优化[J].南京航空航天大学学报,2009,41(4):445-449. 被引量:6
  • 8张光澄主编..非线性最优化计算方法[M].北京:高等教育出版社,2005:411.
  • 9粟塔山 彭维杰 周作益.最优化计算原理与算法程序设计[M].长沙:国防科学技术大学出版社,2002.. 被引量:13

二级参考文献17

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部