期刊文献+

Diophantine inequality involving binary forms 被引量:1

Diophantine inequality involving binary forms
原文传递
导出
摘要 Let r =2^d-1 + 1. We investigate the diophantine inequality|∑i=1^r λiФi(xi,yi)+η|〈(max 1≤i≤r{|xi|,|yi|})^-δ,where Фi(x,y)∈X[x,y](1≤i≤r) are nondegenerate forms of degree d = 3 or 4. Let r =2^d-1 + 1. We investigate the diophantine inequality|∑i=1^r λiФi(xi,yi)+η|〈(max 1≤i≤r{|xi|,|yi|})^-δ,where Фi(x,y)∈X[x,y](1≤i≤r) are nondegenerate forms of degree d = 3 or 4.
作者 Boqing XUE
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第3期641-657,共17页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements The author was grateful to his supervisor, Professor Hongze Li, for his guidance and support. The author would like to thank Quanwu Mu for his warm heart.He gave talks on diophantine inequalities to the author individually and provided helpful discussion. This work was supported by the National Natural Science Foundation of China (Grant No. 11271249) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120073110059).
关键词 Diophantine inequality binary form Diophantine inequality, binary form
  • 相关文献

参考文献15

  • 1Baker R C. Cubic diophantine inequalities. Mathematika, 1982, 29: 83-92. 被引量:1
  • 2Baker R C, Briidern J, Wooley T D. Cubic diophantine inequalities. Mathematika, 1995, 42: 264-277. 被引量:1
  • 3Browning T D. Quantitative Arithmetic of Projective Varieties. Progress in Math, Vol 277. Basel: Birkhauser, 2009. 被引量:1
  • 4Browning T D, Dietmann R, Elliott PDT A. Least zero of a cubic form. Math Ann, 2012, 352: 745-778. 被引量:1
  • 5Briidern J. Cubic diophantine inequalities. Mathematika, 1988, 35: 51-58. 被引量:1
  • 6Briidern J. Cubic diophantine inequalities (II). J Lond Math Soc, 1996, 53(2): 1-18. 被引量:1
  • 7Briidern J. Cubic diophantine inequalities (III). Periodica Mathematica Hungarica, 2001, 42(1-2): 211-226. 被引量:1
  • 8Cook R J. The value of additive forms at prime arguments. J Theor Nombres Bordeaux, 2001, 13: 77-91. 被引量:1
  • 9Davenport H. Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd ed. Cambridge: Cambridge University Press, 2005. 被引量:1
  • 10Davenport H, Heilbronn H. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部