期刊文献+

卫星遥感融合中通量守恒重采样方法与其它常用方法的比较 被引量:4

Comparison of Flux-Conserving Resampling Method with Commonly Used Resampling Methods in Merging of Remote Sensing Data
下载PDF
导出
摘要 对多卫星传感器数据进行融合,首先要将多个传感器数据通过重采样算法重新投影到标准网格上。本文运用一种基于多边形切割算法的通量守恒重采样算法对图像数据进行重采样,并将该算法与3种常用的重采样算法(最邻近插值法、双线性插值法、三次卷积插值法)在信息保真方面的性能进行了比较。将所比较的重采样方法应用于两幅具有代表性的图像,其中一幅为人造图像,用于定性比较各种采样方法在图像缩放中的采样精度;另一幅为某机场卫星遥感图像,用于评价各种重采样方法在旋转图像方面采样的性能,并以定量参数(相关系数及光谱真实性)比较各种采样方法。结果表明,通量守恒重采样法对原始图像的信息保真效果最好,更适用于卫星遥感图像数据融合中的重采样。 For the merging of data from multiple missions, the original data from multiple missions should be re- projected in the standard grids by applying relevant resampling methods. The performance of the Flux-conserving Resarnpling method based on polygon clipping technique was compared with three commonly used methods (Nearest Neighbor Interpolation, Bilinear Interpolation, and Cubic Convolution Interpolation) in the information fidelity of an image data. The four methods were applied to two representative images. One is an artificial image, which is used to qualitatively compare resampling precision of resampling methods for image scaling; The other is a remote sensing image of an airport, which is used to compare the performance and quantitative parameters(Correlation Co- efficient and Spectral Fidelity) of these resampling methods for image rotation, The analysis results show that, Flux-conserving Resampling method has the best performance in preserving the original image information, and more suitable for resampling remote-sensing image data in the data merging.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期103-108,共6页 Periodical of Ocean University of China
基金 国家自然科学基金项目(41276041 40876005)资助
关键词 通量守恒重采样法 最邻近插值法 双线性插值法 三次卷积插值法 flux-conserving resampling method nearest neighbor interpolation bilinear interpolation cubic convolution interpolation
  • 相关文献

参考文献14

二级参考文献35

共引文献109

同被引文献44

  • 1何贤强,潘德炉,黄二辉,赵艳玲.中国海透明度卫星遥感监测[J].中国工程科学,2004,6(9):33-37. 被引量:22
  • 2赵辉,齐义泉,王东晓,王文质.南海叶绿素浓度季节变化及空间分布特征研究[J].海洋学报,2005,27(4):45-52. 被引量:51
  • 3曲利芹,管磊,贺明霞.Sea WiFS和MODIS叶绿素浓度数据及其融合数据的全球可利用率[J].中国海洋大学学报(自然科学版),2006,36(2):321-326. 被引量:11
  • 4许大志,曹文熙,王桂芬.南海北部水体叶绿素a浓度反演的生物光学模型[J].热带海洋学报,2007,26(2):15-21. 被引量:10
  • 5Bailey S W, McClain C R, Werdell P J and Schieber B D. 2000. Nor- malized water-leaving radiance and chlorophyll a match-up analyses. NASA TM-2000-206892. 被引量:1
  • 6Greenbelt, MD : National Aeronautics and Space Administration, Goddard Space Flight Center Carder K L, Chen F R, Cannizzaro J P, Campbell J W and Mitchell B G. 2004. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a. Advances in Space Research, 33 (7) : 1152 - 1159 [ DOI: 10. 1016/S0273 - 1177(03 )00365 - X]. 被引量:1
  • 7Fargion G S and McClain C R. 2003. MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project : 2002- 2003. NASA TM-2003-212249. Greenbelt, MD: National Aero- nautics and Space Administration, Goddard Space Flight Center. 被引量:1
  • 8Gregg W W. 2007. Ocean colour data merging//Reports of the Interna- tional Ocean-Colour Coordinating Group, No. 6. Dartmouth, Cana- da: IOCCG. 被引量:1
  • 9Gregg W W and Conkright M E. 2001. Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the coastal zone color scanner era. Journal of Geophysical Research, 106 (C2) : 2499 - 2516 [ DO1 : 10. 1029/1999JC000028 ]. 被引量:1
  • 10Hooker S B and McClain C R. 2000. The calibration and validation of SeaWiFS data. Progress in Oceanography, 45 ( 3/4 ) : 427 - 465 [DOI: 10.1016/S0079 -6611(00)00012 -4]. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部