期刊文献+

基于用户兴趣图谱的个性化推荐系统设计 被引量:2

Personalized Recommendation Systems Based on User Interest Graph
下载PDF
导出
摘要 借鉴Web2.0、社交网络、复杂网络、本体论和云计算等理论,设计了基于用户兴趣图谱的个性化推荐系统结构,阐明了基于用户兴趣图谱的推荐原理,提出了用户兴趣图谱生成与集成方法,以及用户兴趣图谱的动态演化与反馈机制,提高了推荐系统的推荐质量和精度。 Web2.0, social network, complex network, ontology theory and cloud computing were used as sources of reference to design personalized recommendation system structure .The theory of recommendation based on user interest graph was explained .The methods of user interest graph generation and integration were put forward ;dynamic evolution and feedback mechanism were discussed .The recommendation quality and accuracy of the recommendation system were improved .
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2014年第3期341-344,387,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家科技支撑计划基金资助项目(2013BAH13F01 2012BAH93F04) 中央高校基本业务专项资金资助项目(2012-IB-060)
关键词 兴趣图谱 个性化推荐 云计算 本体 interest graph personalized recommendation cloud computing ontology
  • 相关文献

参考文献10

  • 1JOSEPH A K,JOHN R. Recommender systems:from algorithms to user experience [ J ]. User Modeling and User - adapted Interaction,2012(22) : 101 - 123. 被引量:1
  • 2CHRYSANTHOS D, GAO G D, RITU N. Are cus- tomer more likely to contribute online reviews for hit or niche products? [ J]. Journal of Management Informa- tion System,2010,27 (2) : 127 - 158. 被引量:1
  • 3聂规划,徐尚英,陈冬林.基于用户兴趣度的电子目录个性化方法[J].情报杂志,2011,30(11):146-151. 被引量:1
  • 4YILDIZ E. Accenture an interest- based approach for content personalization [ DB/OL ]. [ 2013 - 12 - 24 ]. www. aecenture, corn/:./ Accenture - Interest - based - Approach. 被引量:1
  • 5马建国,邢玲,李幼平,文丽.广播型网格的用户兴趣图谱[J].电子学报,2005,33(1):142-146. 被引量:5
  • 6LYNNE G. The interest graph architecture -social modeling and information fusion [ C ]///Proc of SPIE. [S. 1.]:[s.n.],2012:1-46. 被引量:1
  • 7FABRIZIO O. Multi - source provenance - aware user interest profiling on the social semantic Web [ C ]// 20th International Conference on User Modeling, Ad- aptation and Personalization, LNCS 7379. [ S. 1. ] : Is. n. I ,2012:378 -381. 被引量:1
  • 8BENJAMIN H. An open framework for multi - source, cross- domain personalisation with semantic interest graphs [ C ] //ACM Recommender Systems. Dublin :[s.n.],2012:313 -316. 被引量:1
  • 9BENJAMIN H, MACIEJ D. Personalisation of social web services in the enterprise using spreading activa- tion for multi - source, cross - domain recommenda- tions[ C] //Association for the Advancement of Artifi- cial Intelligence. [S. 1. ] :[s. n. ] ,2012:46 -51. 被引量:1
  • 10BERKOVSKY S, KUFLIK T, RICCI F. Mediation of user models for enhanced personalization in recom- mender systems [ J ]. User Modeling and User - adap- ted Interaction ,2008,18 ( 3 ) :245 - 286. 被引量:1

二级参考文献29

  • 1马建国,邢玲,李幼平,李在铭.数据广播中的UCL标引与传输机制[J].电子学报,2004,32(10):1621-1624. 被引量:24
  • 2马建国,李在铭.广播型网格[J].计算机科学,2004,31(8):5-7. 被引量:2
  • 3Ma Jianguo, Li Youping, etc. Research of the national scale platform of distant education [J]. Distance Education in China, 2002, 7 ( 186 ) : 38- 40(Chinese). 被引量:1
  • 4Li Youping, Ma Jianguo, etc. The national scale platform of distant education[J]. Data Broadcast,2002.2(16) : 1 - 5 (Chinese). 被引量:1
  • 5Tim Bemers-Lee. The semantic web[J]. Science American,2001, (5) :21 - 24. 被引量:1
  • 6bert-Laszlo Barabasi, Eric Bonabeau. Scale-free networks[J]. Science American, 2003(5) :50 - 59. 被引量:1
  • 7lan Foster.The grid:a new infrastnacture for 21st century science[J].Physics Today,2001,2(55) :42 - 47. 被引量:1
  • 8lan Foster. The grid: computing without bounds [J]. Scientific American, 2003,4:79 - 85. 被引量:1
  • 9Li Youping. The second type network of information sharing [J].Chinese Engineer Science,2002,4(8):8 - 11 (Chinese). 被引量:1
  • 10Ma Jianguo. Information sharing technology, with content indexing[D].Doctoral dissertation. Chengdu: University of Electronics Science technology of China, 2004.6. 被引量:1

共引文献4

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部