期刊文献+

基于Log-Gabor滤波和LBP算子的光照不变人脸识别方法 被引量:7

Illumination Invariant Face Recognition Based on Log-Gabor Filtering and LBP Descriptor
下载PDF
导出
摘要 提出了一种基于Log-Gabor滤波和局部二值模式(local binary patterns,LBP)算子的光照不变人脸识别方法.该方法首先对人脸图像进行对数变换预处理,有效改善剧烈光照变化对人脸图像的不利影响.然后采用Log-Gabor滤波器与图像进行卷积,得到不同尺度和不同方向下的人脸Log-Gabor特征图像.在此基础上,再使用LBP算子对Log-Gabor图像进行描述,最后将所有的Log-Gabor图像的LBP特征进行简单连接,作为人脸的特征向量.将所提出的方法在YaleB数据库上进行实验,实验结果表明该方法能够有效提高复杂光照条件下的人脸识别率. An illumination invariant face recognition method based on Log Gabor filters and local binary patterns(LBP) descriptor is proposed.First,in order to reduce influences caused by intense illumination changes,we have used the logarithmic transformation to preprocess face images.Then we use Log Gabor filters to convolve with each face image to abtain local features under different scales and orientations.finally,by treating Log Gabor face images of different scales and orientations as input,we apply Local Binary Patterns operators to each of them to acquire histogram features,and concatenate all features to form feature vectors for the following classification.Experimental results on Yale B and Extended Yale B prove that the proposed method can effectively improve the face recognition accuracy under complex illumination conditions.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期359-363,共5页 Journal of Xiamen University:Natural Science
基金 国家重点实验室开放基金(BUAA-VR-14KF-01) 教育部留学回国人员科研启动基金
关键词 人脸识别 局部二值模式 LOG-GABOR face recognition local binary patterns(LBP) Log Gabor
  • 相关文献

参考文献13

  • 1Zhu J Y, Zheng W S, Lai J H. Logarithm gradient histo- gram:a general illumination invariant descriptor for face recognition[C] //IEEE Conference on Automatic Face and Gesture Recognition.Shanghai: IEEE, 2013 : 1-8. 被引量:1
  • 2Zhuang Liansheng, Yang Allen, Zhou Zihan, et al. Single- sample face recognition with image corruption and mis- alignment via sparse illumination transfer[C]//Computer Vision and Pattern Recognition Proceedings. Portland, OR: IEEE, 2013 : 3546-3553. 被引量:1
  • 3Jacobs D W, Belhumeur P N, Basri R. Comparing images under variable illumination [C] // Computer Vision and Pattern Recognition. Santa Barbara, CA: IEEE, 1998 : 610-617. 被引量:1
  • 4Sawides M,Kumar B V K V,Khosla P K.Eigenphases vs eigenfaces[C] // Proceedings of the 17th International Conference on IEEE.[s.1.] :IEEE,2004 : 810-813. 被引量:1
  • 5Wang H,Li S Z, Wang Y.Face recognition under varying lighting conditions using self quotient image[C]//Pro- ceedings Sixth IEEE International Conference on.[S. 1.]: IEEE Press, 2004 : 819-824. 被引量:1
  • 6Chen W, Er M J, Wu S. Illumination compensation and normalization for robust face recognition using discretecosine transform in logarithm domain[J].Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,2006,36(2) :458-466. 被引量:1
  • 7Field D J. Relations between the statistics of natural images and the response properties of cortical cells[J].J Opt Soc Am A,1987,4(12):2379-2394. 被引量:1
  • 8Wang Jinglei,Long Fei,Chen Jiping,et al.A novel eye lo- calization method based on Log-Gabor transform and in- tegral image[J].Applied Mathematics & Information Sci- ences, 2012,6: 323-329. 被引量:1
  • 9Ojala T, Pietikfiinen M, Harwood D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition, 1996,29 (1) : 51-59. 被引量:1
  • 10Ahonen T, Hadid A, Pietikfiinen M. Face recognition with local binary patterns [M]. Berlin Heidelberg: Springer, 2004 : 469-481. 被引量:1

同被引文献81

  • 1邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,12(2):322-329. 被引量:36
  • 2YAN Y,WANG H,SUTER D.Multi-subregion based correlation filter bank for robust face recognition[J].Pattern Recognition,2014,47(11):3487-3501. 被引量:1
  • 3YAN Y,ZHANG Y J.1-D correlation filter based class-dependence feature analysis for face recognition[J].Pattern Recognition,2008,41(12):3834-3841. 被引量:1
  • 4LU H P,PLATANIOTIS K N,VENETSANOPOULOS A N.A survey of multilinear subspace learning for tensor data[J].Pattern Recognition,2011,44(7):1540-1551. 被引量:1
  • 5TZIMIROPOULOS G,ZAFEIRIOU S,PANTIC M.Subspace learning from image gradient orientations[J].IEEE Transactions Pattern Analysis and Machine Intelligence,2012,34(12):2454-2466. 被引量:1
  • 6BELHUMEUR P N,HEPANHA J P,KRIEGMAN D J.Eigenfaces vs Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 7WANG X G,TANG X O.A unified framework for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1222-1228. 被引量:1
  • 8ZHAO W Y,CHELLAPPA R,PHILLIPS P J.Subspace linear discriminant analysis for face recognition[R].MD:University of Maryland,1999. 被引量:1
  • 9PARRISH N,GUPTA M.Dimensionality reduction by local discriminative Gaussians[C]∥Proceedings of the 29th International Conference on Machine Learning.Edinburgh,Scotland,UK:Omnipress,2012:1-8. 被引量:1
  • 10CHEN L,LIAO H,KO M,et al.A new LDA-based face recognition system which can solve the small sample size problem[J].Pattern Recognition,2000,33(10):1713-1726. 被引量:1

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部