期刊文献+

基于偏最小二乘法的咳嗽信号检测 被引量:1

Cough Signal Detection Based on Partial Least Squares Method
下载PDF
导出
摘要 咳嗽中包含丰富的病理信息,可以为临床诊断提供重要支持。自动咳嗽检测方法有助于提高检测结果的可靠性,并减少人为工作量。但在自然记录的语音信号中,非咳嗽信号的数量远多于咳嗽,语音流中咳嗽信号的自动检测是个典型的类别不均衡问题。针对该问题,提出一种基于偏最小二乘分类法的咳嗽信号检测模型APLSCX。利用非对称偏最小二乘分类器处理类别不均衡数据的能力,对归一化的特征向量进行特征抽取,同时基于低维数据的方差调整分类平面。实验结果显示,与LCM、SVM等主流模型相比,APLSCX兼顾了小类的召回率和精度指标,具有较高的检出率和较低的误警率,更适用于自然语流中咳嗽信号的检测。 Cough contains a lot of pathological information, which is helpful for clinical diagnosis. Automatic cough detection method is helpful to improve the efficiency and reliability of this task, and it can reduce the artificial workload. When implementing the method, the amount of cough signals is much less than that of other signals in the collected corpus. Therefore, automatic cough detection in audio recordings is a typical class imbalance problem. Aiming at this problem, this paper proposes a novel imbalance classification method named APLSCX for the detection of cough signals. It uses the ability of asymmetric Partial Least Squares(PLS) classifier for processing class imbalance data, to extract feature of the normalized feature vector. At the same time, it adjusts classification plane based on the variance of low dimensional data. Experimental results show that APLSCX can increase the detection rate of cough while keeping the false alarm rate at a low level. Compared with Leicester Cough Monitor(LCM) and Support Vector Machine(SVM) method, it has higher detection rate and lower false alarm rate, and is more suitable for detecting cough signals in audio recording.
出处 《计算机工程》 CAS CSCD 2014年第6期281-284,290,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61005006 61273305)
关键词 咳嗽信号检测 类别不均衡 偏最小二乘法 APLSCX模型 端点检测 cough signal detection class imbalance Partial Least Squares(PLS) method APLSCX model endpoint detection
  • 相关文献

参考文献16

  • 1Hsu J Y, Stone R A, Logan-Sinclair R B, et al. Coughing Frequency in Patients with Persistent Cough: Assessment Using a 24 Hour Ambulatory Recorder[J]. European Respiratory Journal, 1994, 7(7): 1246-1253. 被引量:1
  • 2胡维平,赖克方,杜明辉,陈如冲,钟思军,陈荣昌,钟南山.基于经验模态分解分析和隐马尔可夫模型识别的咳嗽音检测[J].生物医学工程学杂志,2009,26(2):277-281. 被引量:5
  • 3阳国清,莫鸿强,李文,田联房,郑则广.连续语音流中咳嗽信号的端点检测[J].生物医学工程学杂志,2010,27(3):544-547. 被引量:4
  • 4Barry S J, Dane A D, Morice A H, et al. The Automatic Recognition and Counting of Cough[J]. Cough, 2006, 2(1): 8. 被引量:1
  • 5Matos S, Birring S S, Pavord I D, et al. An Automated System for 24-h Monitoring of Cough Frequency: The Leicester Cough Monitor[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(8): 1472-1479. 被引量:1
  • 6Larson S, Comina G, Gilman R H, et al. Validation of an Automated Cough Detection Algorithm for Tracking Recovery of Pulmonary Tuberculosis Patients[J]. PLoS ONE, 2012, 7(10). 被引量:1
  • 7Liu Xuying, Wu Jianxin, Zhou Zhihua. Exploratory Under- sampling for Class-imbalance Learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 539-550. 被引量:1
  • 8Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. 被引量:1
  • 9Rosipal R, Kr?mer N. Overview and Recent Advances in Partial Least Squares[C]//Proceedings of Conference on Subspace, Latent Structure and Feature Selection Techniques. Bohinj, Slovenia: Springer, 2006: 34-51. 被引量:1
  • 10Qu Haini, Li Guozheng, Xu Weisheng. An Asymmetric Classifier Based on Partial Least Squares[J]. Pattern Recognition, 2010, 43(10): 3448-3457. 被引量:1

二级参考文献13

  • 1KORPAS J, SADLONOVA J, VRABEC M. Analysis of the cough sound: an overview [ J ]. Pulmonary Pharmacology,1996,9:261-268. 被引量:1
  • 2CHUNG K F. Assessment and measurement of cough:the value of new tools[J]. Pulmonary Pharmacology & Therapeutics, 2002,15:267-272. 被引量:1
  • 3HSU J Y, STONE R A, LOGAN-SINCLAIR R B, et al. Coughing frequency in patients with persistent cough: assessment using a 24 hour ambulatory recorder[J]. European Respiratory Journal, 1994, 7:1246-1253. 被引量:1
  • 4THORPE C W, TOOP L J, DAWSON K P. Towards a quantitative description of asthma cough sounds[J]. European Respiratory Journal, 1992, 5:685-692. 被引量:1
  • 5HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc R Soc Lond A, 1998, 454:903-995. 被引量:1
  • 6RABINER L and JUANG B H, Fundamentals of speech recognition[J]. Englewood Cliffs, NJ: Prentice Hall, 1993. 被引量:1
  • 7FLANDRIN P, GABRIEL RILLING G, GONCALVES P. Empirical mode deeompositon as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2) :112-114. 被引量:1
  • 8QuatieriTF.离散时间语音信号处理--原理与应用[M].赵胜辉,等译.北京:电子工业出版社,2004. 被引量:3
  • 9KORPAS J, SADLONONA J, VRABEC M. Analysis of the cough soundzan overview[J]. Pulm Pharmacol, 1996, 9 : 261- 268. 被引量:1
  • 10VAN HIRTUM A, BERCKMANS D. Assessing the sound of cough towards vocality[J]. Med Engng Phys, 2004, 24:535- 540. 被引量:1

共引文献6

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部