期刊文献+

基于商品特征的商品评论信息挖掘方法 被引量:1

Method of Review Information Mining Based on Characteristics of Commodity Goods
下载PDF
导出
摘要 人们在购物网站上发表的评论信息,一方面作为消费者对商品的反馈,同时为潜在的消费者提供购物经验。但是,随着商品评论信息的增加,消费者往往会被淹没在评论信息中。本文采用观点挖掘方法,以商品特征为研究对象,挖掘基于商品某一特征的用户评论信息,计算消费者的情感倾向,确定情感分布。旨在通过对此问题的研究,给消费者提供更明确、更细化的商品评价。 Product reviews presented on the Web by the customers are used to be as the feedback on products and meanwhile pro- viding shopping experience for potential customers. However, with the increasing of commodity review information, consumers tend to be submerged in these comments. This paper presents an algorithm for product reviews mining base on opinion mining. First, we collect product reviews using crawler. Second, identify the product features which the customers mention in the view. Third, find the opinion sentences. Last, compute the emotional scores of the opinion sentences and output the emotional distribu- tion. The aims of researching on this question are to provide consumers with more clear, more detailed evaluation to goods.
作者 周民 李蕊
出处 《计算机与现代化》 2014年第6期98-101,105,共5页 Computer and Modernization
关键词 商品评论 观点挖掘 情感计算 分水岭算法 commodity comments opinion mining affective computing watershed algorithm
  • 相关文献

参考文献18

  • 1孟凡博,蔡莲红,陈斌,吴鹏.文本褒贬倾向判定系统的研究[J].小型微型计算机系统,2009,30(7):1458-1461. 被引量:7
  • 2张紫琼,叶强,李一军.互联网商品评论情感分析研究综述[J].管理科学学报,2010,13(6):84-96. 被引量:154
  • 3Pang B, Lee L, Vaithyanathan S. Thumb up? Sentiment classification using machine learning techniques[C]// Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing(EMNLP). 2002:79-86. 被引量:1
  • 4Turney P D. Thumbs up or Thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]// Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics(ACL). 2002:417-424. 被引量:1
  • 5Liu Bing. Sentiment analysis and subjectivity [M]// Handbook of Natural Language Processing(Second Edition). 2010:Chapter 28. 被引量:1
  • 6宇缨. Web文本观点挖掘综述[J]. 计算机科学, 2010,37(10A):122-126. 被引量:1
  • 7Pang B, Lee L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008,2(1-2):1-135. 被引量:1
  • 8Wiebe J, Bruce R F, O’Hara T P. Development and use of a gold standard data set for subjectivity classifications[C]// Proceedings of the Association for Computational Linguistics(ACL). 1999:246-253. 被引量:1
  • 9Popescu A M,Etzioni O. Extracting product opinions from reviews[C]// Proceeding of the Human Language Technology Conference and the Conference on Empirical Methods in Natural Language Processing(HLT/EMNLP),2005. 2005:339-346. 被引量:1
  • 10施国良,石桥峰.基于文本挖掘的不同购物网站商品评论一致性研究[J].现代图书情报技术,2011(12):64-68. 被引量:6

二级参考文献44

  • 1温滔,朱巧明,吕强.一种快速汉语分词算法[J].计算机工程,2004,30(19):119-120. 被引量:19
  • 2王琦,唐世渭,杨冬青,王腾蛟.基于DOM的网页主题信息自动提取[J].计算机研究与发展,2004,41(10):1786-1792. 被引量:81
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 5JAIN A K, MURTY M N, FLYNN P J. Data clustering: A review [ J]. ACM Computing Surveys, 1999, 31 (3) : 264 - 323. 被引量:1
  • 6SOILLE V L. Watersheds in digital spaces: An efficient algorithm based on immersion simulations [ J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13 (6) :583 -598. 被引量:1
  • 7ROERDINK J B T M, MEIJSTER A. The watershed transform: Definitions, algorithms and parallelization strategies [ J]. Fundamenta Informatieae, 2001,41:187 - 228. 被引量:1
  • 8BICEGO M, CRISTANI M, FUSIELLO A, et al. Watershed-based unsupervised clustering [C]//EMMCVPR 2003: Energy Minimization Methods in Computer Vision and Pattern Recognition, LNCS 2683. Berlin: Springer-Verlag, 2003:83-94. 被引量:1
  • 9GERAUD T, STRUB, P Y, DARBO J. Color image segmentation based on automatic morphological clustering [ C]// IEEE Proceedings of International Conference on Image Processing. Washington: IEEE, 2001,3: 70-73. 被引量:1
  • 10DUBES R J A. Algorithm for clustering data[ M]. New Jersey: Prentice Hall, 1988. 被引量:1

共引文献179

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部