期刊文献+

基于无线体域网中多生理信号驾驶疲劳检测 被引量:11

Detection of Driver Fatigue Based on Multi-physiological Signals in Wireless Body Area Network
下载PDF
导出
摘要 利用生理信号的无线测量设备实现了对驾驶员在驾驶过程中的脑电信号、肌电信号和呼吸信号的采集,并对其进行分析处理,从而实现驾驶员的疲劳检测.首先分别计算三个生理信号的近似熵并将其作为疲劳检测的特征参数,然后使用主成分分析对特征参数进行降维优化处理,同时对原始特征参数和分析后的主成分分别进行统计分析,基于优化处理后的特征参数利用回归方程建立驾驶疲劳估计模型.最后通过交叉验证对本方法进行评价,并使用数据融合方法给出了综合的评价结果.评价结果表明提出的方法对驾驶员疲劳状态的检测正确率达到90%以上. Driver fatigue was detected using electroencephalograph, electromyography and respiration signals, which were collected wirelessly. The approximate entropies of the three signals were selected as features, and the reduction of feature dimensions was achieved by principle component analysis. Statistical analyses were then given to both original features and principle components and an evaluation model for driver fatigue was established using regression equation. The experimental results were evaluated by cross validation and the accuracy was more than 90% based on data fusion method. The results verify that the model is effective in detecting driver fatigue.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期850-853,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61071057)
关键词 疲劳驾驶 无线体域网 脑电 肌电 呼吸 driver fatigue wireless body area network electroencephalograph electromyography respiration
  • 相关文献

参考文献12

  • 1Wang H. Using human EEG and EMG to analyze the design and reliability of car models [ C ]//14th ISSAT International Conference on Reliability and Quality in Design. Orlando, 2008:16 - 18. 被引量:1
  • 2Li W, He Q C, Fan X M, et al. Evaluation of driver fatigue on two channels of EEG data [ J ]. Neuroscience Letters, 2012,506(2) :235 - 239. 被引量:1
  • 3Sambhu S, Bhagat M, Routray A. EEG signal analysis for the assessment and quantification of driver' s fatigue [ J ]. Transportation Research :Part F,2010,13 (5) :297 - 306. 被引量:1
  • 4Pastor G, Tejero P, Choeliz M, et al. Rear-view mirror use, driver alertness and road type:an empirical study using EEG measures[ J ]. Transportation Research Part F, 2006,9 ( 4 ) : 286 - 297. 被引量:1
  • 5Jap B T, Lal S, Fischer P, et al. Using EEG spectral components to assess algorithms for detecting fatigue [ J ]. Expert Systems with Applications,2009,36 ( 2 ) : 2352 - 2359. 被引量:1
  • 6Dias N S, Carmo J P, Mendes F M, et al. Wireless instrumentation system based on dry electrodes for acquiring EEG signals [ J ]. Medical Engineering & Physics, 2012,34 (7) :978 -981. 被引量:1
  • 7Baek J Y,Au J H,Choi J M,et al. Flexible polymeric dry electrodes for the long-term monitoring of ECG [ J ]. Sensors and Actuators ,2008,143 (2) :423 - 429. 被引量:1
  • 8胡巍,赵章琰,路知远,陈香.无线多通道表面肌电信号采集系统设计[J].电子测量与仪器学报,2009,23(11):30-35. 被引量:31
  • 9Papadelis C,Papadeli C K,Bamidis P D,et al. The effect of hypoxia on multichannel EEG signal complexity[ J ]. Clinical Neurophysiology ,2007 ,118 ( 1 ) : 31 - 52. 被引量:1
  • 10Pincus S M. Approximate entropy ( ApEn ) as a complexity measure[ J ]. Chaos, 1995,5 ( 1 ) : 100 - 117. 被引量:1

二级参考文献8

  • 1DELUCA C J. Physiology and mathematics of myoelectric signals [J]. IEEE Transactions on Biomedicine Engineering, 1979, 26 (6): 313-325. 被引量:1
  • 2ZHAO Z Y, CHEN X, ZHANG X, et al. Study on online gesture sEMG recognition[C]. LNCS, 2007, 4681: 1257- 1265. 被引量:1
  • 3FUKUDA O, TSUJI T. A human-assisting manipulator teleo- perated by EMG signals and arm motion[J]. IEEE Transactions on Robotics and Automation, 2003, 19(2): 210-222. 被引量:1
  • 4ASO S, SASAKI A, HASHIMOTO H, et al. Driving electric car by using EMG interface[C]. IEEE International Conferences on Cybernetics Intelligent Systems, 2006: 1-5. 被引量:1
  • 5TOSHIYUKI K, OSAMU A. Proposal of anticipatory pattern recognition for EMG prosthetic hand control[C]. IEEE International Conferences on SMC, 2008: 897- 902. 被引量:1
  • 6HERMIE J. Development of recommendations for SEMG sensors and sensor placement procedures[J]. Journal of Electromyography and Kinesiology. 2000, 10(5): 361-374. 被引量:1
  • 7朱昊,辛长宇,吉小军,施文康.表面肌电信号前端处理电路与采集系统设计[J].测控技术,2008,27(3):37-39. 被引量:20
  • 8钱晓进,杨基海,冯焕清,蒋鑫.肌电检测中消除工频干扰的方法[J].中国医疗器械杂志,2003,27(4):260-263. 被引量:9

共引文献30

同被引文献98

  • 1焦昆,李增勇,陈铭,王成焘.模拟驾驶过程中腰部疲劳的表面肌电信号分析[J].人类工效学,2004,10(3):10-12. 被引量:22
  • 2徐安,刘军,彭旗宇,黄国建.动态近似熵快速算法在心率变异研究中的应用[J].同济大学学报(自然科学版),2005,33(4):520-524. 被引量:8
  • 3Chen Xiaojing,Qi Chunhua,Zhu Shoulin.On study of driver's shoulder fatigue in manual and automatic on grassland highway[J].Advanced Materials Research,2014,3470(1030):2054-2060. 被引量:1
  • 4Hostens I,Ramon H.Assessment of muscle matigue in low level monotonous task performance during car driving[J].Journal of Electromyography and KineSiology,2005,15(2):266-274. 被引量:1
  • 5Lee D H,Park K S.Multivariate analysis of mental and physical load components in sinus arrhythmia scores[J].Ergonomics.1990,33(1):35-47. 被引量:1
  • 6Jiao Kun,Li Zengyong,Chen Ming.Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers[J].Int Arch Occup Environ Health,2004,77(5):205-212. 被引量:1
  • 7Zuzewicz K,Roman-Liu D,Konarska M,et al.Heart rate variability(HRV)and muscular system activity(EMG)in cases of crash threat during simulated driving of a passenger car[J].International Journal of Occupational Medicine and Environmental Health,2013,26(5):710-723. 被引量:1
  • 8Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology:Heart and Circulatory Physiology,2000,278(6):2039-2049. 被引量:1
  • 9潘大明.心电图学教[M].杭州:浙江大学出版社,2008:10-15. 被引量:1
  • 10Movassaghi S,Abolhasan M,Lipman J,et al.Wireless body area networks:A survey[J].IEEE Communications Surveys&Tutorials,2014,16(3):1658-1686. 被引量:1

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部