期刊文献+

改进双背景模型的遗留物检测算法研究

Research on abandoned object detection based on improved algorithm of dual-background model
下载PDF
导出
摘要 为了快速准确地对视频序列中的遗留物体进行监控,对传统的双背景遗留物检测方法进行了对比改进,提出改进后的快慢混合高斯背景模型算法,对运动区域进行检测。利用改进后的Camshift的跟踪算法对运动目标进行跟踪并且基于图像信息熵的概念对运动目标进行提取。实验结果表明,该算法能够准确检测出场景中的遗留物体,有效提取运动目标并显示遗留物主,具有较强的鲁棒性。 To detect the abandoned object quickly and accurately in the video sequences,the abandoned object detection based on dual-background model method was improved.A method called the improved dual-background model method was presented to extract movement regions,then movement regions were tracked based on Camshift method and a key frame of movement regions was extracted based on entropy of image information.Experimental result showed that the algorithm could detect the area of abandoned object and extract movement regions accurately,and had strong robustness.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期2192-2196,共5页 Computer Engineering and Design
基金 重庆市科委自然科学基金项目(2010BB2399)
关键词 智能视频监控 遗留物检测 双背景模型 CAMSHIFT 图像信息熵 intelligent video surveillance abandoned object detection dual-background Camshift entropy of image information
  • 相关文献

参考文献12

  • 1Hui Kong, Jean-Yves Audibert . Jean Ponce. Detecting abandoned objects with a moving camera [J]. IEEE Transactions on Image Processing, 2010. 19 (8): 2201-2210. 被引量:1
  • 2Li X, Zhang C. Zhang D. Abandoned objects detection using double illumination invariant foreground masks [C] / /20th International Conference on Pattern Recognition. 2010: 436-439. 被引量:1
  • 3Miezianko R, Pokrajac D. Detecting and recognizing abandoned objects in crowed environments [C] / / Proc of Computer Vision Systems, 2008: 241-250. 被引量:1
  • 4Jae Kyu Suhr , Ho Gi lung, Gen Li , et al. Mixture of gaussiansbased background subtraction for bayer-parrern image sequences [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21 (3): 365-370. 被引量:1
  • 5Aydogrnus 0, Talu M F. Comparison of extended Kalman and particle filter based sensor less speed control [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61 (2): 402-410. 被引量:1
  • 6Sherrah l, Ristic B, Redding N J. Particle filter to track multiple people for visual surveillance [J]. Computer Vision. 2011. 5 (4): 192-200. 被引量:1
  • 7Olivier Barnich , Marc Van Droogenbroeck. VIBE: A powerful random technique to estimate the background in video sequences [C] / / IEEE International Conference on Acoustics. Speech and Signal Processing, 2009: 945-948. 被引量:1
  • 8Olivier Barnich, Marc Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences [l]. IEEE Transactions on Image Processing, 2011. 20 (6): 1709-1724. 被引量:1
  • 9Ying Li Tian , Rogerio Schmidt Feris , Haowei Liu. et al. Robust detection of abandoned and removed object s in complex surveillance videos [J]. IEEE Transactions on Systems, Man, and Cybernetics and Reviews, 2011.41 (5): 565-576. 被引量:1
  • 10Song Xiaojing , Seneviratne L D, Althoefer K. A Kalman filter integrated optical flow method for velocity sensing of mobile robots [J]. IEEE/ ASME Transactions on Mechatronics , 2010, 16 (3): 551-563. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部