期刊文献+

求解多目标TSP的降幂编码遗传算法 被引量:5

Genetic algorithm with descending order code designed for solving multi-objective TSP
下载PDF
导出
摘要 为解决采用结点序号编码的遗传算法在求解旅行商问题时,需要花费大量时间处理交叉和变异操作带来的重码问题,提出一种新的降幂编码遗传算法。根据结点位置信息,设计降幂编码与解码算法,并设计降幂编码的交叉和变异算子。建立一个多目标旅行商问题模型,分析每一代个体适应度值的差异性,采用主成分分析法确定路程和费用权重。实验结果表明,降幂编码遗传算法解决了重码问题,计算效率、收敛速度和求解精度较遗传算法有显著改善。 To solve traveling salesman problem using genetic algorithm with the node serial number directly,it needed a lot of time to deal with the duplicated code caused by crossover and mutation.A new genetic algorithm with descending order code was put forward.According to the node location information,the encoding and decoding methods were designed,the operators of crossover and mutation in this code system were constructed.A multi-objective model of traveling salesman problem was established.The weights of distance and cost were determined by means of principal components analysis through comparing with the fitness diversity of individual in each generation.Experiments showed that the proposed algorithm could solve the problem of duplicated code,it had great improvement on calculation efficiency,convergence rate and precision of solution.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第6期1988-1993,2003,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(51275365)
关键词 算法理论 降幂编码 遗传算法 旅行商问题 多目标决策 algorithmic theory descending order code genetic algorithm traveling salesman problem multi-objective decision
  • 相关文献

参考文献14

  • 1Ugur A, Aydin D. An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms [J]. Advances in Engineering Software, 2009, 40 (5): 341-349. 被引量:1
  • 2Berube J F, Gendreau M, Potvin J Y. An exact-constraint method for bi-objective combinatorial optimization problems- ap- plication to the traveling salesman problem with profits [J]. European Journal of Operational Research, 2009, 194 (1) : 39-50. 被引量:1
  • 3Cote J F, Archetti C, Speranza M G, et al. A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks [J]. Networks, 2012, 60 (4): 212-226. 被引量:1
  • 4Bassetto T, Mason F. Heuristic algorithms for the 2-period balanced travelling salesman problem in euclidean graphs [J]. European Jour- nal of Operational Research, 2011, 208 (3): 253-262. 被引量:1
  • 5饶卫振,金淳,黄英艺.求解TSP问题的最近邻域与插入混合算法[J].系统工程理论与实践,2011,31(8):1419-1428. 被引量:25
  • 6Marinakis Y, Marinaki M. A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem [J]. Computers & Operations Research, 2010, 37 (3): 432-442. 被引量:1
  • 7周辉仁,唐万生,王海龙.基于差分进化算法的多旅行商问题优化[J].系统工程理论与实践,2010,30(8):1471-1476. 被引量:30
  • 8Creput J C, Koukam A. A memetic neural network for the Eu- clidean traveling salesman problem [J]. Neurocomputing, 2009, 72 (4): 1250-1264. 被引量:1
  • 9Chang P C, Huang W H, Ting C J. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems [J]. Expert Systems with Applications, 2010, 37 (3): 1863-1878. 被引量:1
  • 10Maiumdar J, Bhunia A K. Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times [J]. Journal of Computational and Applied Mathematics, 2011, 235 (9) : 3063-3078. 被引量:1

二级参考文献43

共引文献71

同被引文献49

  • 1柴佳祺,李锋,宓为建,杨小明,沈一帆.基于启发式算法的散货码头排船问题研究[J].中国工程机械学报,2015,13(1):22-28. 被引量:7
  • 2李玉珍,王宜怀.主成分分析及算法[J].苏州大学学报(自然科学版),2005,21(1):32-36. 被引量:44
  • 3马东彦,陈峰.以总加权完工时间为目标的两台机越库排序的动态规划算法[J].上海交通大学学报,2007,41(5):852-856. 被引量:17
  • 4Moustafa Elshafei, Hesham K Altares. A dynamic programming algorithm for days-off scheduling with sequence dependent labor costs [J]. Springer Science Business Media, LLC, 2008, 11(2) : 85 -93. 被引量:1
  • 5Browning T R, Eppinger SD. Modeling impacts of process architecture on cost and schedule risk in product development [ J ]. IEEE Transactions on Engineering Management, 2002, 49(4): 428 - 442. 被引量:1
  • 6Mavrovouniotis Michalis,Yang Shengxiang.Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors[J].Appl Soft Comput J,2013,13(10):4023-4037. 被引量:1
  • 7Dong Wenyong,Sheng Kang,Yi Yunfei.ITO-based evolutionary algorithm to solve traveling salesman problem[C]//2nd International Conference on Mathematical Modeling in Physical Sciences,2013:1-5. 被引量:1
  • 8Yue-Jiao G,Jun Z,Chung H S.An efficient resource allocation scheme using particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2012,16(6):801-816. 被引量:1
  • 9Zheng Z,Hock Soon S,Jixiang S.A hybrid particle swarm optimization with cooperative method for multi-object tracking[C]//Congress on Evolutionary Computation.Washington:IEEE Press,2012:1-6. 被引量:1
  • 10LIU Shiqing,YANG Kongyu.Improvement of genetic algorithm of TSP[J].Journal of Beijing Information Science and Technology University,2014,29(2):46-50(in Chinese). 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部