期刊文献+

基于压缩感知的航空货运量模型研究 被引量:3

Compressed Sensing Model of Air Cargo Volume
下载PDF
导出
摘要 最近十几年,压缩感知(CS)理论得到快速发展,并广泛应用于图像重建、信道估计以及谱估计等不同领域.主要研究压缩感知理论在我国航空货运量建模中的应用,以1991~2006年我国航空货运量的统计数据为基础,利用压缩感知理论对我国航空货运量建模,并通过正交匹配追踪(OMP)算法得到我国航空货运量的压缩感知模型.通过拟合误差指标的比较可知,基于压缩感知理论的航空货运量模型具有模型相对比较简洁,拟合精度高于基于灰色GM(1,1)以及基于回归分析法的航空货运量模型等优点.实验证明,此方法可应用于短期内我国航空货运量的预测,为航空货运市场调控提供有效理论依据. Recently, much attention has been drawn to the problem of recovering a sparse solution from a small set of linear measurements, which can be found in many different fields, such as image processing, channel estimation, spectrum estimation. In this paper, we mainly studied the application of compressed sensing in the field of air cargo volume. According to air cargo volume statistical data in China from the year 1991 to 2006, an air cargo volume combination forecasting model was established by the orthogonal matching pursuit, based on compressed sensing. The test result showed that this model was more suitable than GM ( 1,1 ) model and regression analysis model. Compressed sensing model of air cargo volume can be used to forecast short-term aeronautic cargo capacity, and even can provide some effective theory evidence to supervise the native aeronautic cargo market.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期402-407,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金民航联合基金(U1233105)资助项目
关键词 压缩感知 航空货运量预测 灰色GM(1 1) 回归分析法 诱导有序几何加权平均 compressed sensing prediction of air cargo volume GM ( 1,1 ) regression analysis ordered weighted geometric averaging
  • 相关文献

参考文献24

二级参考文献66

共引文献69

同被引文献39

  • 1林小平,袁捷.基于灰色模型的成都双流机场物流预测[J].武汉理工大学学报(交通科学与工程版),2007,31(3):457-459. 被引量:18
  • 2Ellenberg J. Fill in the blanks: Using math to turn lores datasets into hi-ressamples[J]. Wired Maga- zine, 2010, 18(3): 2-22. 被引量:1
  • 3Zeng B, Fu J. Directional discrete cosine trans- forms.. A new framework for image coding [J]. IEEE Trans Circuits Syst Video Technol, 2011, 18 (13) : 305-313. 被引量:1
  • 4Ji H, Liu C Q, Shen Z W, etal. Robust video de- noising using low rank matrix completion [C]// Computer Vision and Pattern Recognition (CVPR), 2010: 1791-1798. 被引量:1
  • 5Malioutov D, Cetin M, Willsky A S. A sparse sig- nal reconstruction perspective for source location with sensor arrays[J]. IEEE Transaction on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 6Matthew H, Thomas S. Compressed sensing radar [C]// 2008 IEEE International Conference on Acous-tics, Speech and Signal Processing, 2008: 1509-1512. 被引量:1
  • 7Natarajan B K. Sparse approximate solutions to line- ar systems[J]. SIAM J Comput, 1995, 24: 227- 234. 被引量:1
  • 8Davis G, Mallat S, Zhang Z. Adaptive time-fre- quency decompositions [J]. SPIE J Opt Engin, 1994, 33(7): 2183-2191. 被引量:1
  • 9Pati Y, Rezaifar R, Krishnaprasad P. Orthogonal matching pursuit: Recursive function ap-proximation with applications to wavelet decomposi-tion[C]// Asilomar Conf Signals, Systems, and Computers, Pacie Grove, CA, 1993: 40-45. 被引量:1
  • 10Davenport M A, Wakin M B. Analysis of orthogo- hal matching pursuit using the restricted isometry property[J]. IEEE Trans. on Information Theory, 2010, 56(9).. 4395-4401. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部