期刊文献+

Peaked Traveling Wave Solutions to a Generalized Novikov Equation with Cubic and Quadratic Nonlinearities 被引量:1

Peaked Traveling Wave Solutions to a Generalized Novikov Equation with Cubic and Quadratic Nonlinearities
原文传递
导出
摘要 The Camassa-Holm equation, Degasperis–Procesi equation and Novikov equation are the three typical integrable evolution equations admitting peaked solitons. In this paper, a generalized Novikov equation with cubic and quadratic nonlinearities is studied, which is regarded as a generalization of these three well-known studied equations. It is shown that this equation admits single peaked traveling wave solutions, periodic peaked traveling wave solutions, and multi-peaked traveling wave solutions.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第6期742-750,共9页 理论物理通讯(英文版)
基金 Supported in part by the NSF-China for Distinguished Young Scholars Grant-10925104
关键词 generalized Novikov equation Camassa-Holm equation Degasperis-Procesi equation peakedtraveling wave solution Camassa-Holm方程 二次非线性 Degasperis-Procesi方程 行波解 立方和 广义 演化方程 周期
  • 相关文献

参考文献35

  • 1R. Camassa and D.D 1661. A. Constantin and D. 192 (2009) 165. 被引量:1
  • 2Holm, Phys. Rev. Lett. 71 (1993). 被引量:1
  • 3Lannes, Arch. Ration. Mech. Anal R.S. Johnson, J. Fluid Mech. 455 (2002) 63. 被引量:1
  • 4B. Fuchssteiner and A.S. Fokas, Physica D 4 (1981/1982) 47. 被引量:1
  • 5P.J. Olver and P. Rosenau, Phys. Rev. E 53 (1996) 1900. 被引量:1
  • 6B. Fuchssteiner, Physica D 95 (1996) 229. 被引量:1
  • 7M.S. Alber, R. Camassa, D.D. Holm, and J.E. Marsden, Lett. Math. Phys. 32 (1994) 137. 被引量:1
  • 8C.S. Cao, D.D. Holm, and E.S. Titi, J. Dynam. Differen- tim Equations 16 (2004) 167. 被引量:1
  • 9S. Kouranbaeva, J. Math. Phys. 40 (1999) 857. 被引量:1
  • 10A. Constantin and B. Kolev, J. Phys. A 35 (2002) R51. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部