期刊文献+

基于布尔矩阵的空间关联规则提取方法研究 被引量:5

Extracting Spatial Association Rules Based on Boolean Matrix
下载PDF
导出
摘要 空间关联规则是空间数据挖掘(SDM)中的重要内容之一。由于空间数据的复杂性,传统的空间关联规则挖掘方法主要是将空间数据库变换为非空间数据库,通过挖掘算法挖掘空间关联规则。目前,Apriori算法是关联规则挖掘中使用最为普遍的算法,但是,由于该算法在关联规则提取过程中需要多次扫描数据库,并且产生冗余的候选项集,因此,在执行大型数据库的关联规则挖掘时,具有效率低下的缺陷。本文基于Apriori算法提出了基于布尔矩阵的空间关联规则挖掘算法,并以挖掘福建省厦门市土地覆盖现状与地形特征因子的空间关联关系作为试验案例,对比Apriori算法的提取结果与提取效率,结果表明:该算法不仅减少了扫描数据库的次数,而且减少了冗余候选项集的产生,提高了空间关联规则的提取效率。 Mining spatial association rules is one of the most important branches in the field of Spatial Data Mining( SDM). Because of the complexity of spatial data,a traditional method in extracting spatial association rules is to transform spatial database into general transaction database. The Apriori algorithm is one of the most commonly used methods in mining association rules at present. But a shortcoming of the algorithm is that its performance on the large database is inefficient. The present paper proposed a new algorithm by extracting maximum frequent itemsets based on a Boolean matrix. And a case study about extracting the spatial association rules between land cover and terrain factors was demonstrated to show the validation of the new algorithm. Finally,the conclusion was reached by the comparison between the Apriori algorithm and the new one which revealed that the new algorithm improves the efficiency of extracting spatial association rules.
作者 陈俊明
出处 《测绘与空间地理信息》 2014年第5期123-126,130,共5页 Geomatics & Spatial Information Technology
关键词 布尔矩阵 空间关联规则 APRIORI算法 Boolean matrix spatial association rule Apriori algorithm
  • 相关文献

参考文献5

二级参考文献63

共引文献47

同被引文献52

  • 1巨珺,张虹.空间数据挖掘方法分析[J].福建电脑,2007,23(3):46-47. 被引量:2
  • 2空间数据挖掘理论与应用[M]. 科学出版社, 2006.空间数据挖掘理论与应用[M]科学出版社,2006. 被引量:1
  • 3Florian Verhein,Sanjay Chawla.Mining spatio-temporal patterns in object mobility databases[J]. Data Mining and Knowledge Discovery . 2008 (1) 被引量:1
  • 4Jiawei Han,Hong Cheng,Dong Xin,Xifeng Yan.Frequent pattern mining: current status and future directions[J]. Data Mining and Knowledge Discovery . 2007 (1) 被引量:1
  • 5Agrawal R,,Imelinski R,Swani A.Mining association rules between sets of items in large database. International Journal of Science and Modern Engineering . 2013 被引量:1
  • 6Mukhlash I,Sitohang B.Spatial data preprocessing for mining spatial association rule with conventional association miningalgorithms. Proceedings of the International Conference on Electrical Engineering and Informatics . 2007 被引量:1
  • 7Marcin Gorawski,Pawel Jureczek.Using Apriori-like Algorithms for Spatio-Temporal Pattern Queries. Proceedings of the International Multiconference on Computer Science and Information Technology . 2009 被引量:1
  • 8Koperski K,Han J.Discovery of Spatial Association Rules in Geographic Information Databases. Proceedings of the 4th International Symposium on Large Spatial Databases(SSD 95) . 1995 被引量:1
  • 9Jiawei Han,Jian Pei,Yiwen Yin et al.Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery . 2004 被引量:4
  • 10KRAJCA P,OUTRATA J,VYCHODIL V.Using frequent closed itemsets for data dimensionality reduction[C]// 11th IEEE International Conference on Data Mining,In- stitute of Electrical and Electronics Engineers Inc,Van- couver,2011:1128-1133. 被引量:1

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部