摘要
结合非标准有限差分格式给出了求解分数阶薛定谔方程的一种数值解法,对时间导数离散后的分母构造了一个关于时间步长的函数来近似,证明了该差分格式是无条件收敛和稳定的.数值算例表明该方法不仅有非常好的收敛性和稳定性,还有较高的精度,因此该方法是有效的.
Combined the nonstandard finite difference schemes, a numerical method for solving the time fractional Schrodinger equation has been presented,denominator function for the space discrete derivatives is a space step function, and the difference scheme is unconditional stability and convergence. Numerical example shows that the numerical method has not only good convergence and stability, but also higher precision. So the numerical method is a practical method.
出处
《北华大学学报(自然科学版)》
CAS
2014年第3期296-298,共3页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金项目(11271101)
关键词
分数阶薛定谔方程
非标准有限差分格式
无条件收敛
无条件稳定
fractional Schrodinger equation
nonstandard finite difference schemes
unconditional convergence
unconditional stability