期刊文献+

基于近似熵与CSP的异步BCI空闲状态检测方法 被引量:1

Test Method of Idle State in Asynchronous BCI Based on Approximate Entropy and CSP
下载PDF
导出
摘要 针对异步脑机接口(BCI)中空闲状态难以检测的问题,提出将近似熵与公共空间模式(CSP)综合的方法来处理.在采用二级分类策略的前提下,通过近似熵与CSP方法分别从时间复杂度和空间模式上提取不同类型的脑电特征,利用这些特征训练出不同的分类器,然后使用多分类器投票的方法将它们综合以提高判断空闲状态的正确率.将本文的方法运用到BCI竞赛数据中,得到最终具体想象任务的命中率(TPR)普遍比通过阈值法得到的结果要高.数据处理的结果说明了本文方法对空闲状态检测的有效性. To cope with the issue of the idle state detection which is difficult in motor imagery based brain-computer interface, the paper proposes a method that approximate entropy and common spatial pattern(CSP) are combined. On the condition of two-class classification, different kings of features are extracted through approximate entropy in time complexity and CSP in spatial pattern. Then these features are used to make different classifiers which are combined by vote-based classification method to improve the accuracy of judging idle state. By way of this method, the final experimental results of BCI competition shows the true positive rate(TPR) of intentional motor imagery is higher than the threshold method. The result of data processing indicates the effectiveness of the proposed method.
出处 《计算机系统应用》 2014年第6期153-157,共5页 Computer Systems & Applications
关键词 异步脑机接口 空闲状态 近似熵 共同空间模式 多分类器投票法 asynchronous brain-computer interface idea state approximate entropy common spatial pattern vote-based classification method
  • 相关文献

参考文献7

二级参考文献100

  • 1万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学(生物医学工程分册),2005,28(1):4-9. 被引量:22
  • 2Pfurtscheller G, Neuper C, Schlogl A, et al. Separability of EEG signals recorded during right and left motor imaginary using adaptive autoregressive parameters[J].IEEE Trans Rehabil Eng, 1998,6 : 316-325. 被引量:1
  • 3Wolpaw J R, McFarland D J, Vaughan T M, et al. Braincomputer interface research at the Wadsworth Center [J]. IEEE Trans Rehabil Eng, 2000, 8 : 222-225. 被引量:1
  • 4Pfurtscheller G, Lopes da Silva F H. Event-related EEG/ MEG synchronization and desychronization:Basic principles [J]. Clin Neurophysiol, 1999, 110: 1842-1857. 被引量:1
  • 5Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7 ( 6 ) : 1129-1159. 被引量:1
  • 6Lee T W, Girolami M, Sejnewski T J. Independent com- ponent analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources [J].Neural Computation, 1999, 11 (2): 409-433. 被引量:1
  • 7Pfurtscheller G. BCI classification, competition.2005. [EB/OL].http ://ida. first, fraunhofer.de/projects/bci/ competition_iii/, 2005-11. 被引量:1
  • 8Kanehiro F, Fujiwara K, Hirukawa H, et al. Getting up motion planning using Mahalanobis distance [C]//IEEE International Conference on Robotics and Automation. Rome, 2007 : 2540-2545. 被引量:1
  • 9PFURTSCHELLER G, FLOTZINGER D, KALCHER J. Brain-computer interface: a new communication device for handicapped persons [ J ]. Journal of Microcomputer Applications, 1993,16 (3) : 293- 299. 被引量:1
  • 10FARWELL L A, DONCHIN E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials [ J ]. Eleclroencephalogr Clin Neurophysiol, 1998,70(6) : 510-523. 被引量:1

共引文献110

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部