摘要
在实自反Banach空间中,引入并研究一类新的渐近Ф-拟伪压缩型集值变分包含问题,证明了这类变分包含解的唯一性,并在没有序列{t_n}或{s_n}有界的条件下,建立了渐近Ф-拟伪压缩型集值变分包含解的具随机混合误差的Ishikawa迭代序列的强收敛性定理,从而改进和推广了一些已知的结果.
This paper is to introduce and study a new class of variational inclusion problems with asymptotically - quasi-pseudocontractive type mappings in real Banach spaces.The uniqueness of such solutions is proved and strong convergence theorem of Ishikawa iterative sequences with random mixed errors of solutions for the variational inclusions is also established without the conditions that sequence {tn} or{sn} is bounded.The results here improve and extend some known results.
出处
《系统科学与数学》
CSCD
北大核心
2014年第4期504-512,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(11371070)资助课题
关键词
集值变分包含
渐近φ-拟伪压缩型映象
随机混合误差的Ishikawa迭代序列
Set-valued variational inclusion
asymptotically φ-quasi-pseudocontractive type mapping
Ishikawa iterative sequences with random mixed errors.