期刊文献+

碳纳米复合物作为催化剂和乳化剂用于水/有机两相体系反应(英文) 被引量:3

Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems
下载PDF
导出
摘要 This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emulsions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fashion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru; and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that consequently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics. This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emul-sions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fash-ion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru;and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that conse-quently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.
机构地区 School of Chemical
出处 《催化学报》 SCIE CAS CSCD 北大核心 2014年第6期798-806,共9页
基金 supported by the US Department of Energy/EPSCOR (DE SC00044136.85)
关键词 固体催化剂 纳米复合物 催化反应 碳纳米管 有机系统 乳化剂 聚合物复合材料 液界面 Carbon nanomaterials Nanohybrids Emulsions Biphasic aqueous/organic mixtures Catalysis at water/oil interface Biomass conversion Eischer-Tropsch synthesis
  • 相关文献

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部