期刊文献+

Thermal Stresses and Theorem on Decomposition

Thermal Stresses and Theorem on Decomposition
下载PDF
导出
摘要 The thermal expansion strain is considered as a special case of eigenstrain.The authors proved the theorem on decomposition of eigenstrain existing in a body into two constituents:Impotent eigenstrain(not causing stress in any point of a body)and nilpotent eigenstrain(not causing strain in any point of a body).According to this theorem,the thermal stress can be easily found through the nilpotent eigenstrain.If the eigenstrain is an impotent one,the thermal stress vanishes.In this case,the eigenstrain must be compatible.The authors suggest a new approach to measure of eigenstrain incompatibility and hence to estimate of thermal stresses. The thermal expansion strain is considered as a special case of eigenstrain. The authors proved the theo- rem on decomposition of eigenstrain existing in a body into two constituents: Impotent eigenstrain (not causing stress in any point of a body) and nilpotent eigenstrain (not causing strain in any point of a body). According to this theorem, the thermal stress can be easily found through the nilpotent eigenstrain. If the eigenstrain is an im- potent one, the thermal stress vanishes. In this case, the eigenstrain must be compatible. The authors suggest a new approach to measure of eigenstrain incompatibility and hence to estimate of thermal stresses.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期175-179,共5页 南京航空航天大学学报(英文版)
关键词 EIGENSTRAIN thermal stresses DECOMPOSITION impotent eigenstrain nilpotent eigenstrain functional space eigenstrain thermal stresses decomposition impotent eigenstrain nilpotent eigenstrain functionalspace
  • 相关文献

参考文献7

  • 1Reissner H. Eigenspannungen und eigenspan- nungsquellen[J]. Z Angew Math Mech, 1931, 11(1) : 1-8. 被引量:1
  • 2Duvant J, Lions T. Les inequations en mechanique et en physique[M]. Paris: Dunod, 1972. 被引量:1
  • 3Mura T. Micromechanics of defects in solids[M]. 2nd edition. Kluwer, Dordrecht : Springer, 1991. 被引量:1
  • 4Irschik H, Ziegler F. Eigenstrain without stress and static shape control of structures[J]. AIAA Jour- nal, 2001, 39(10) :1985. 被引量:1
  • 5Lebedev L P, Vorovich I I. Functional analysis in mechanics[M]. [S. 1. ]: Springer-Verlag, 2000. 被引量:1
  • 6Nyashin Y, Kirykhin V. Biological stresses in living tissues: The modeling and control problem [J]. Russian Journal of Biomechanics, 2002, 6(3):13. 被引量:1
  • 7Nyashin Y, Lokhov V, Ziegler F. Decomposition method in linear elastic problems with eigenstrain [J]. Z Angew Math Mech, 2005, 65: 557. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部