期刊文献+

基于有监督特征提取的生菜叶片农药残留浓度高光谱鉴别研究 被引量:6

下载PDF
导出
摘要 为了保证人们对蔬菜的安全食用,研究了蔬菜叶片农药残留的无损检测方法。标准营养液无土栽培生菜样本,在成熟期按4种不同浓度,分别为1.250、0.830、0.600、0.375 mL/L,将氰戊菊酯农药雾状均匀喷洒至生菜叶片上,8 h后采集生菜叶片高光谱数据。采用标准归一化(SNV)算法对原始光谱进行预处理,分别利用基于非监督特征提取方法主成分分析(PCA)、局部保留投影(LPP)与基于监督特征提取方法线性判别分析(LDA)、局部保留投影(SLPP)对降噪后的光谱数据进行特征提取,统一选用支持向量机(SVM)作为分类器。利用相同的训练样本与测试样本进行分类试验,对生菜叶片农药残留浓度分类鉴别的结果为,PCA-SVM分类正确率为82.14%,LPP-SVM分类正确率为85.71%,LDA-SVM分类正确率为89.29%,SLPP-SVM分类正确率达到92.86%。结果表明,与非监督特征提取算法相比,监督特征提取算法由于充分利用了样本的类别特性,使得分类器对降维后的数据更加敏感,分类精度更高,其中SLPP-SVM的分类效果最好。
出处 《江苏农业科学》 北大核心 2014年第5期227-229,共3页 Jiangsu Agricultural Sciences
基金 国家自然科学基金(编号:31101082 61075036) 江苏高校优势学科建设工程(编号:苏政办发[2011]6号) 国家级大学生创新创业训练计划(编号:201310299011) 江苏省高等学校大学生创新创业训练计划(编号:201310299011Z)
  • 相关文献

参考文献8

二级参考文献46

共引文献131

同被引文献131

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部