期刊文献+

基于主动学习的平衡类鉴别分析

Class-balanced Discriminant Analysis Based on Active Learning
下载PDF
导出
摘要 特定类的思想是将传统的多类特征提取和识别任务转化为多个两类问题,由此产生了类不平衡问题,影响最优鉴别特征的提取。为了解决该问题,文中提出了一种主动学习平衡类鉴别分析(ALCBD)方法。对于每个特定类,ALCBD从其对应的大类中选取它的部分近邻样本构成特定类的近邻样本集,接着将这个近邻样本集划分成与特定类相同样本数的多个子集,然后根据主动学习的思想挑选最优子集与特定类结合成为新样本集,最后用传统的线性鉴别分析(LDA)方法得到鉴别向量。基于USPS和Honda/UCSD数据库的实验表明ALCBD方法能够有效地解决类不平衡问题,并改善了识别性能。 The class-specific idea tends to recast a traditional multi-class feature extraction and recognition task into several binary class problems.In this way,the class-imbalance problem occurs,which might affect the extraction of optimal discriminant features.In order to address this problem,propose an approach named Active-Learning based Class-Balanced Discriminant analysis( ALCBD).For a specific class,ALCBD selects a reduced counterpart class whose data are nearest to the data of specific class,and further divides them into smaller subsets,each of which has the same size as the specific class.Then,ALCBD chooses the optimal subset according to the idea of active learning,and further combines it with the specific class to form a new sample set.Finally perform the Linear Discriminant Analysis( LDA) on them to obtain discriminative vectors.The experimental results on the USPS and Honda/UCSD databases demonstrate that the ALCBD approach can effectively solve the class-imbalance problem,and improve the recognition performance.
出处 《计算机技术与发展》 2014年第6期95-98,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61073113) 江苏省普通高校研究生科研创新计划(CXLX13_465)
关键词 类不平衡 鉴别特征 主动学习 鉴别分析 class-imbalance discriminant features active learning discriminant analysis
  • 相关文献

参考文献13

  • 1赵振勇,王保华,王力,崔磊.人脸图像的特征提取[J].计算机技术与发展,2007,17(5):221-224. 被引量:18
  • 2韩璐.一种基于2DLPP和2DLDA的人脸识别方法研究[J].计算机技术与发展,2012,22(9):87-90. 被引量:3
  • 3Baggenstoss P. Class- specific feature sets in classification [ J ]. IEEE Trans on Signal Processing, 1999,47 ( 12 ) : 3428- 3432. 被引量:1
  • 4陈晓红,陈松灿.类依赖的线性判别分析[J].小型微型计算机系统,2008,29(5):894-897. 被引量:4
  • 5Japkowicz N, Stephen S. The class imbalance problem:a sys- tematic study [ J ]. Intelligent Data Analysis, 2002,6 ( 5 ) :429-449. 被引量:1
  • 6He Haibo, Garcia E A. Learning from imbalanced data [ J ]. IEEE Trans on Knowledge and Data Engineering, 2009,21 (9) :1263-1284. 被引量:1
  • 7Ertekin S, Huang Jian, Bottou L, et al. Learning on the border: active learning in imbalanced data classification [ C ]//Proc of the sixteenth ACM conf on information and knowledge man- agement. New York, NY, USA : ACM ,2007 : 127-136. 被引量:1
  • 8Wang Jinghua, You J, Li Qin, et al. Extract minimum positive and maximum negative features for imbalanced binary classifi- cation [ J ]. Pattern Recognition,2012,45 (3) : 1136-1145. 被引量:1
  • 9Belhumeur P N,Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [ J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1997,19 (7) :711-720. 被引量:1
  • 10Ma Zhanyu, Leijion A. Bata mixture models and the applica- tion to image classification [ C ]///Proceedings of the 16th IEEE international conf on image processing. Cairo: IEEE, 2009:2045-2048. 被引量:1

二级参考文献36

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部