期刊文献+

基于分层特征关联条件随机场的遥感图像分类 被引量:4

Remote sensing image classification using layer-by-layer feature associative conditional random field
下载PDF
导出
摘要 针对高分辨率遥感图像分类中空间上下文信息表达的难题,提出了一种新的多尺度条件随机场(CRF)模型。首先将图像内容表示成从细到粗三个超像素层:区域层、对象层、场景层,并将超像素特征逐层关联形成特征向量;再利用支持向量机(SVM)定义CRF关联势函数,利用相邻超像素特征对比度加权的Potts模型定义CRF交互势函数,最后形成一个分层特征关联的多尺度SVM-CRF模型。以Quickbird遥感图像中两个复杂场景为测试数据对该模型的分类有效性进行了验证,结果表明:该模型比基于上述三个超像素层的单尺度SVM-CRF模型分类精度分别平均提高了2.68%、1.66%、3.75%,而且分类时耗时较少。 For the difficulty of expressing spatial context in classification of high resolution remote sensing imagery, a new multi-scale Conditional Random Field (CRF)model was proposed here. Specifically, a given image was represented as three superpixel layers respectively being region, object and scene from fine to coarse firstly. Then features were extracted layer-by- layer, and those features from the three layers were associated with each other to form a feature vector for each node in region layer. Secondly, Support Vector Machine (SVM) was adopted to define association potential function, and Potts model weighted by feature contrast function was used to define interaction potential function of CRF model, thus a layer-by-layer feature associative and multi-scale SVM-CRF model was formed. To confirm the effectiveness of the proposed model in classification, experiments on two complex scenes from Quickbird remote sensing imagery were developed. The results show that the proposed model achieves an improved accuracy averagely 2.68%, 2.37%, 3.75% higher than that of SVM-CRF model based on either region, object or scene layer, also it consumes less time in classification.
作者 杨耘 徐丽
出处 《计算机应用》 CSCD 北大核心 2014年第6期1741-1745,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(41301386 41372330) 中央高校基本科研业务费专项资金资助项目(CHD2011JC085)
关键词 遥感图像分类 条件随机场 超像素 多尺度 支持向量机 remote sensing image classification Conditional Random Field (CRF) superpixel multi-scale SupportVector Machine (SVM)
  • 相关文献

参考文献18

  • 1李德仁,童庆禧,李荣兴,龚健雅,张良培.高分辨率对地观测的若干前沿科学问题[J].中国科学:地球科学,2012,42(6):805-813. 被引量:166
  • 2SUTYON C, MCCALLUM A. An introduction to conditional random fields[ J]. Machine Learning, 2011,4(4) : 267 - 373. 被引量:1
  • 3SHOTTON J, WINN J, ROTHER C, et al. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context[ J]. International Jour- nal of Computer Vision, 2009, 81 (1) : 2 - 23. 被引量:1
  • 4ZHANG Y. Image-based geometric modeling and mesh generation [ M]. Berlin: Springer-Verlag, 2013:55 -67. 被引量:1
  • 5YANG B, NEVATIA R. An online learned CRF model for multi-tar- get tracking[ C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012:2034-2041. 被引量:1
  • 6张微,汪西莉.基于超像素的条件随机场图像分类[J].计算机应用,2012,32(5):1272-1275. 被引量:10
  • 7ZHANG G, JIA X. Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification[ J]. IEEE Geoscience and Remote Sensing Letters, 2012,9(5): 856 -860. 被引量:1
  • 8YANG Y. Land cover classification of high resolution images using superpixel-based conditional random fields[ J]. International Journal of Applied Mathematics and Statistics, 2013, 47(17) : 129 - 134. 被引量:1
  • 9SU X, HE C, FENG Q, et al. A supervised classification method based on conditional random fields with multiseale region connection calculus model for SAR image[ J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(3) : 497 - 501. 被引量:1
  • 10HAO Z, WANG Q, REN H, et al. Muhiscale superpixel classifi- cation for tumor segmentation in breast ultrasound images [ C ]// Proceedings of the 2012 19th IEEE International Conference on Im- age Processing. Piscataway: IEEE Press, 2012:2817-2820. 被引量:1

二级参考文献165

共引文献196

同被引文献44

  • 1邓劲松,王珂,李君,董云奇.决策树方法从SPOT-5卫星影像中自动提取水体信息研究[J].浙江大学学报(农业与生命科学版),2005,31(2):171-174. 被引量:40
  • 2徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. 被引量:1458
  • 3SHANK D B, HOOGENBOOM G, McCLENDON R W. Dewpoint temperature prediction using artificial neural networks[J]. Journal of Applied Meteorology and Climatology, 2008, 47(6):1757-1769. 被引量:1
  • 4AGAM N, BERLINER P R. Dew formation and water vapor adsorption in semi-arid environments-a review[J]. Journal of Arid Environments, 2006, 65(4): 572-590. 被引量:1
  • 5PRABHA T, HOOGENBOOM G. Evaluation of the weather research and forecasting model for two frost events[J]. Computers and Electronics in Agriculture, 2008, 64(2):234-247. 被引量:1
  • 6QX/T 48-2007, 地面气象观测规范第4部分:天气现象观测[S]. 北京:中国标准出版社,2007. 被引量:1
  • 7TAKENAKA N, SODA H, SATO K, et al. Difference in amounts and composition of dew from different types of dew collectors[J]. Water Air and Soil Pollution, 2003, 147(1): 51-60. 被引量:1
  • 8NIKOLAYEV V S, SIBILLE P, BEYSENS D A. Coherent light transmission by a dew pattern[J]. Optics Communications, 1998, 150(1): 263-269. 被引量:1
  • 9ZHU L, CAO Z G. Salient region detection using Wasserstein distance measure based on nonlinear scale space[C]//MIPPR 2013: Proceedings of the 8th SPIE International Conference on Pattern Recognition and Computer Vision, SPIE 8919. Bellingham: SPIE, 2013: 89190A. 被引量:1
  • 10ACHANTA, R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. 被引量:1

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部