期刊文献+

一阶实值多项式相位信号快速稀疏分解算法

Fast algorithm for sparse decomposition of real first-order polynomial phase signal based on group testing
下载PDF
导出
摘要 针对稀疏分解运算量巨大的问题,提出了一种针对一阶实值多项式相位信号(PPS)运算量较小的稀疏分解算法,从而实现了稀疏分解的快速性。该算法采用如下策略:首先采用级联字典的方式,即字典D由Df和Dp级联而成,其中字典Df的原子主要考虑一阶实值多项式相位信号的频率成分,不考虑相位因素,而字典Dp的原子主要考虑一阶实值多项式相位信号的相位成分,不考虑频率因素;其次对字典Df的原子与信号进行匹配测试,测试采用群测试算法搜索匹配的原子,并采用二次测试的方法来达到测试的准确性;最后根据测得的匹配频率原子,构造字典Dp,并通过匹配追踪(MP)算法搜索到匹配的相位原子,从而完成了信号的稀疏分解。仿真结果表明该算法的效率约为匹配追踪算法的604倍和遗传算法的139倍,具有运算量小、稀疏分解快的特点,复杂度仅为O(N),而且不具有智能计算的随机性。 Concerning the huge calculation of sparse decomposition, a fast sparse decomposition algorithm with low computation complexity was proposed for first-order Polynomial Phase Signals ( PPS). In this algorithm, firstly, two concatenate dictionaries including Df and Dp were constructed, and the atoms in the Df were constructed by the frequency, and the atoms in the Dp were constructed by the phase. Secondly, for the dictionary Of, the group testing was used to search the atoms that matched the signal, and the correlation values of the atoms and the signal were tested twice to achieve the reliability. Finally, according to the matching frequency atoms tested by group testing, the dictionary Dp was constructed, and the matching phase atoms were searched by Matching Pursuit (MP) algorithm. Therefore, the sparse decomposition of real first-order PPS was finished. The simulation results show that the computational efficiency of the proposed algorithm is about 604 times as high as that of matching pursuit and about 139 times as high as that of genetic algorithm, hence the presented algorithm has less computation complexity, and can finish sparse decomposition fast. The complexity of the algorithm is only O( N).
出处 《计算机应用》 CSCD 北大核心 2014年第6期1604-1607,1665,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61301120) 中央高校基本科研业务费专项资金资助项目(CDJZR12160020)
关键词 多项式信号 群测试 稀疏分解 匹配追踪 冗余字典 Polynomial Phase Signal (PPS) group testing sparse decomposition Matching Pursuit (MP) over- complete dictionary of atoms
  • 相关文献

参考文献14

  • 1TOSIC I, FROSSARD P. Dictionary learning[ J]. IEEE Signal Pro- cessing Magazine, 2011,28(2) : 27 - 38. 被引量:1
  • 2MALLAT S, ZHANG Z. Matching pursuits with time-frequency dic- tionaries[ J]. IEEE Transactions on Signal Processing, 1993, 41 (12) :3397 -3414. 被引量:1
  • 3CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposi- tion by basis pursuit[ J]. SIAM Review, 2001, 43(1) : 129 - 159. 被引量:1
  • 4PATI Y C , REZAIIFA R , KRISHNAPRASAD P S . Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[ C]//Proceedings of Conference Record of the 27th Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE Press, 1993:40 -44. 被引量:1
  • 5CHINH L A, MINH N DO. Tree-based orthogonal matching pursuit algorithm for signal reconstruction [ C ]/! Proceedings of the 2006 IEEE International Conference Image Processing. Piscataway: IEEE Press, 2006:1277 - 1280. 被引量:1
  • 6王菊,王朝晖,刘银.基于PSO和LM的信号稀疏分解快速算法[J].激光与红外,2012,42(2):227-230. 被引量:9
  • 7王在磊,和红杰,王建英,尹忠科.基于核心原子库和FHT的图像MP稀疏分解快速算法[J].铁道学报,2012,34(9):51-57. 被引量:5
  • 8李雨昕,尹忠科,王建英.MP稀疏分解快速算法及其在语音识别中的应用[J].计算机工程与应用,2010,46(1):122-124. 被引量:11
  • 9RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Double sparsity learning sparse dictionaries for sparse signal approximation[ J]. IEEE Transactions on Signal Processing, 2010, 58 ( 3 ) : 1553 - 1564. 被引量:1
  • 10FORNASIER M, RAUHUT H. Iterative thresholding algorithms [J]. Applied and Computational Harmonic Analysis, 2008, 25 (2) : 187 -208. 被引量:1

二级参考文献24

  • 1尹忠科,王建英,Pierre Vandergheynst.一种新的图像稀疏分解快速算法[J].计算机应用,2004,24(10):92-93. 被引量:14
  • 2尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 3范虹,孟庆丰,张优云,冯武卫,高强.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报,2007,43(7):115-119. 被引量:14
  • 4尹忠科.稀疏分解及其在图像压缩中的应用研究[J].学术动态(成都),2007(2):12-15. 被引量:3
  • 5Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans on Signal Processing, 1993,41(12) :3397-3415. 被引量:1
  • 6Arthur P L,Philipos C L.Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition[C]//Proc of IEEE ICASSP,Hong Kong,2003:820-828. 被引量:1
  • 7Bourouba H,Djemili R,Bedda M,et al.New hybrid system(supervised classifier/HMM) for isolated arabicspeech recognition [C]// IEEE Trans on ICTTA,2006:1264-1269. 被引量:1
  • 8Averbuch Amir Z, Zheludev Valery A, Khazanovsky. Mariel deconvolution by matching pursuit using spline wavelet packets dictionaries [ J ]. Applied and Computational Harmonic Analysis ,2011,31 ( 1 ) :98-124. 被引量:1
  • 9Saligrama Venkatesh,Zhao Manqi. Thresholded basis pursuit:LP algorithm for order-wise optimal support recovery for sparse and approximately sparse signals from noisy random measurements[ J]. IEEE Transactions on Information Theory ,2011,57 (3) : 1567-1586. 被引量:1
  • 10Cai T Tony, Wang Lie. Orthogonalmatching pursuit for sparse signal recovery with noise [ J ]. IEEE Transactions on Information Theory ,2011,57 ( 7 ) :4680-4688. 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部