期刊文献+

基于迭代自组织数据聚类阈值PCNN的图像分割法

Image Segmentation Based on Iterative Self-Organizing Data Clustering Threshold PCNN
下载PDF
导出
摘要 基于迭代自组织数据聚类阈值的脉冲耦合神经网络的图像分割算法改进了传统脉冲耦合神经网络在图像分割中由于不恰当的参数选择而导致图像欠分割和过分割的问题。基于迭代自组织数据聚类阈值的脉冲耦合神经网络图像分割算法无需确定参数和循环次数,也不需要用特定原则确定循环结束的条件,只需利用图像中的每个像素点的灰度值进行聚类,然后利用改进的迭代自组织数据算法确定图像的初始聚类数目以及聚类中心,并以此作为脉冲耦合神经网络的最佳阈值,一次点火过程自动完成分割。实验结果表明,这种算法具有较好的分割结果和分割速度,提高了分割的准确性。 A novel image segmentation method based on ISODC - PCNN, is put forward to solve the problem of PCNN with improper parameter results in short of segmentation or over - segmentation. The proposed algorithm does not need to determine the model parameter, iteration time, or the iteration stop condition. ISODC - PCNN makes use of the grey level of the image to cluster, uses the improved ISODATA to determine the initial number and the center of clustering, which can be used as the optimum threshold value of PCNN. ISODC - PCNN can segment an image with one time of iteration. The result of the experiment shows that the proposed method has good performance and it is faster and more accurate than some other PCNN based on segmentation algorithms.
出处 《河池学院学报》 2014年第2期71-76,共6页 Journal of Hechi University
关键词 脉冲耦合神经网络 迭代自组织数据聚类 图像分割 Pulse Coupled Neural Network Iterative Self- Organizing Data Clustering image segmentation
  • 相关文献

参考文献6

二级参考文献38

  • 1毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 2刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报(A辑),2005,10(5):579-584. 被引量:58
  • 3Stewart R D,Fermin I,et al.Region growing with pulse-coupled neural networks:an alternative to seeded region growing[J].IEEE Trans.on Neural Networks,2002,13(6):1557-1562. 被引量:1
  • 4Shareef N,Wang D L,et al.Segmentation of medical images using LEGION[J].IEEE Trans.on Medical Imaging,1999,18(1):74-91. 被引量:1
  • 5Kuntimad G,Ranganath H S.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans.on Neural Networks,1999,10(3):591-598. 被引量:1
  • 6Eckhorn R,ReitBoeck H J,et al.Feature linking via synchronization among distributed assemblies:simulation of results form cat visual cortex[J].Neural Computation,1990,2(3):293-307. 被引量:1
  • 7Ranganath H S,Kuntimad G,et al.Pulse coupled neural networks for image processing[A].Proceedings of IEEE Southeastcon'95,Visualize the Future[C].New York:IEEE,1995.37-43. 被引量:1
  • 8Ranganath H S,Kuntimad G.Image segmentation using pulse coupled neural networks[A].Proceedings of IEEE International Conference on Neural Networks[C],Orlando FL:IEEE,1994.1285-1290. 被引量:1
  • 9Johnson J L,Padgett M L.PCNN models and applications[J].IEEE Trans.on Neural Networks,1999,10(3):480-498. 被引量:1
  • 10Ranganath H S,Kuntimad G.Object detection using pulse coupled neural networks[J].IEEE Trans.on Neural Networks,1999,10(3):615-620. 被引量:1

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部