期刊文献+

求解鞍点问题的一类广义SSOR预条件子 被引量:2

A GENERALIZED SSOR PRECONDITIONER FOR SADDLE POINT PROBLEMS
原文传递
导出
摘要 本文研究了鞍点问题的预条件子.在SSOR型预处理方法的基础上,通过引入新的松弛参数,提出了一种广义的SSOR型预条件子,该预条件子需要选择一个预处理矩阵和2个待定参数.文中分析了预处理后系数矩阵特征值的性质及收敛性,最后用数值例子验证了新预条件子的有效性. This paper studies a preconditioner for saddle point problems. Based on the SSOR pre- conditioning method, we present a generalized SSOR preconditioner by introducing two new parameters, the preconditioner needs to choose a preconditioning matrix and two uncertain parameters. Spectrum properties and convergence of the preconditioned matrix are studied. Numerical experiments are illustrated to show the efficiency of the new preconditioner.
作者 朱雪芳
出处 《数值计算与计算机应用》 CSCD 2014年第2期117-124,共8页 Journal on Numerical Methods and Computer Applications
基金 浙江省教育厅科研项目资助(Y201329203)
关键词 鞍点问题 预条件子 SSOR方法 预处理GMRES方法 Saddle-point problems preconditioner SSOR method Preconditioned GMRES method
  • 相关文献

参考文献1

二级参考文献19

  • 1Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Nu- merica, 2005, 14: 1-137. 被引量:1
  • 2Li Changjun, Li Baojia, Evans D J. A generalized successive overrelaxation method for least sauares problems[J1. BIT. 1998. 38. 347-356. 被引量:1
  • 3Bramble J H, Pasciak J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problem[J]. SIAM J Numer Anal, 1997, 34(3): 1072-1092. 被引量:1
  • 4Bai Zhongzhi, Wang Zengqi. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl, 2008, 428: 2900-2932. 被引量:1
  • 5Golub G H, Wu X, Yuan J Y. SOR-like methods for augmented systems[J]. BIT, 2001, 41: 71-85. 被引量:1
  • 6Bai Zhongzhi, Parlett B N, Wang Zengqi. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer Math, 2005, 102: 1-38. 被引量:1
  • 7Li Jicheng, Xu Kong. Optimum parameters of GSOR-like methods for the augmented sys- tems[J]. Appl Math Comput, 2008, 204(1): 150-161. 被引量:1
  • 8Bai Zhongzhi, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl, 2003, 24: 603-626. 被引量:1
  • 9Bai Zhongzhi, Golub G H, Pan Jianyu. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Numer Math, 2004, 98:1-32. 被引量:1
  • 10Bai Zhongzhi, Golub G H. Accelerated Hermitian and skew-Hermitian splitting methods for saddle point problems[J]. IMA J Numer Anal 2007, 27:1-23. 被引量:1

共引文献8

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部