期刊文献+

基于主动学习的动态模糊聚类算法

Dynamic Fuzzy Data Clustering Algorithm Based on Active Learning
下载PDF
导出
摘要 聚类问题是近几年来机器学习和数据挖掘领域研究的热点问题,由于获取大量监督信息费时费力,目前国内外研究的重点是如何获得少量但对聚类性能提高显著的监督信息,再加上实际问题中存在的动态模糊性,故本文提出一种结合主动学习的动态模糊聚类算法DF-DBSCAN,通过引入动态模糊等价关系、动态模糊信任测度和动态模糊似然测度这3个约束信息来指导DBSCAN的聚类过程,以提高聚类的性能。实验结果表明,DF-DBSCAN算法不仅解决了实际问题中存在的动态模糊性数据的描述和表示问题,而且能够高效地进行数据聚类,显著地提高聚类性能。 Data clustering has recently become a topic of significant interest to data mining and machine learning communities. Because achieving supervised data may be expensive, the research focuses on attaining the supervised information form little information but can significantly improve the clustering performance. Moreover, there are many dynamic fuzzy problems in the real world. This paper presents a dynamic fuzzy data clustering algorithm based on active learning, and introduces three constraints which in- clude dynamic fuzzy equivalence relation, dynamic fuzzy trust measure and dynamic fuzzy likelihood measure to guide the clustering process of DBSCAN, aiming at improving clustering performance. Experimental results show that this proposed approach is effective in data clustering; also it can describe the dynamic fuzzy data of the clustering problem better. The clustering performance of active DF-DBSCAN has been dramatically improved with three constraints and better than the three representative methods.
作者 张静 聂章龙
出处 《计算机与现代化》 2014年第5期24-27,32,共5页 Computer and Modernization
基金 常州市科教城院校科研基金资助项目(K2012311)
关键词 主动学习 聚类算法 动态模糊集 动态模糊关系 动态模糊测度 active learning clustering algorithm dynamic fuzzy sets dynamic fuzzy relation dynamic fuzzy measure
  • 相关文献

参考文献16

  • 1李凡长,刘贵全,佘玉梅著..动态模糊逻辑引论[M].昆明:云南科学技术出版社,2005:181.
  • 2吴伟宁,刘扬,郭茂祖,刘晓燕.基于采样策略的主动学习算法研究进展[J].计算机研究与发展,2012,49(6):1162-1173. 被引量:33
  • 3赵卫中,马慧芳,李志清,史忠植.一种结合主动学习的半监督文档聚类算法[J].软件学报,2012,23(6):1486-1499. 被引量:30
  • 4Basu S, Banerjee A, Mooney R J. Active semi-supervision for pairwise constrained clustering [ C ]//Proceedings of the 2004 SIAM International Conference on Data Mining. 2004:333-344. 被引量:1
  • 5Tong S, Chang E. Support vector machine active learning for image retrieval[ C]// Proceedings of the 9th ACM In- ternational Conference on Multimedia. 2001 : 107-118. 被引量:1
  • 6Kapoor A, Grauman K, Urtasun R, et al. Active learning with Gaussian processes for object categorization [ C ]// Proceedings of IEEE the 1 l th International Conference on Computer Vision. 2007 : 1-8. 被引量:1
  • 7Viet-Vu Vu, l_abroohe N, Bouchon-Meunier B. Active learn- ing for semi-supervised K-means clustering[ C ]// The 22nd IEEE International Conference on Tools with Artificial Intelli- gence. 2010,1:12-15. 被引量:1
  • 8Huang R Z, Lam W, Zhang Z. Active learning of con- straints for semi-supervised text clustering [ C ]// Proceed- ings of the 7th SIAM International Conference on Data Minin. 2007 : 113-124. 被引量:1
  • 9Huang R Z, Lain W. An active learning framework for semi- supervised document clustering with language modeling [ J ].Data and Knowledge Engineering, 2009,68( 1 ) :49-67. 被引量:1
  • 10宁春,李凡长.动态模糊逻辑关系学习[J].计算机工程与应用,2011,47(29):34-39. 被引量:2

二级参考文献118

  • 1徐彤,张莉,谢波.基于FOIL算法的一阶规则集学习器设计方法[J].空军工程大学学报(自然科学版),2005,6(6):80-83. 被引量:1
  • 2Zhu Xiaojin. Semi-supervised learning literature survey, TR1530 [R]. Madison, Wisconsin: Computer Sciences, University of Wisconsin-Madison, 2005. 被引量:1
  • 3Tomanek K, Olsson F. A Web survey on the use of active learning to support annotation of text data [C] //Proc of HLT-NAACL. Stroudsburg, PA: ACL, 2009: 45-48. 被引量:1
  • 4Settles B. Active learning literature survey, TR1648 [R]. Madison, Wisconsin: Computer Sciences, University of Wisconsin-Madison, 2009. 被引量:1
  • 5Guyon I, Cawley G, Dror G, et al. Design and analysis of the WCCI 2010 active learning challenge [C] //Proc of IEEE/ INNS IJCNN 2010. Piscataway, NJ: IEEE, 2010:1-8. 被引量:1
  • 6Angluin D. Queries and concept learning [J]. Machine Learning, 1988, 2(4): 319-342. 被引量:1
  • 7Dasgupta S, Langford J. A tutorial on active learning [EB/ OL]. (2009-06-04) [-2010-07-29]. http://hunch, net/- active_learning/. 被引量:1
  • 8Wu Yi, Kozintsev I, Bouguet J Y, et al. Sampling strategies for active learning in personal photo retrieval [C] //Proc of ICME 2006. Piscataway, NJ: IEEE, 2006:529-532. 被引量:1
  • 9Baum E B, Lang K. Query learning can work poorly when a human oracle is used [C] //Proc of IEEE IJCNN 1992. Piscataway, NJ: IEEE, 1992:335-340. 被引量:1
  • 10Cohn D, Atlas L, Ladner R. Improving generalization with active learning [J]. Machine Learning, 1994, 15(2): 201- 221. 被引量:1

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部