摘要
Arthritis, most notably rheumatoid arthritis, can destroy the surfaces of the bones; the ideal solution for this is T JR (total joint replacement), which would restore joint functionality, maintain correct aesthetics and eradicate pain for the patient. Current metacarpophalangeal TJR do not provide the normal biomechanical range of motion and functionality. The proposed design attempts to correct this through the use of design geometry and functional anatomy. Numerical analysis is used in conjunction with computational solid modeling to compare a one-piece silicone implant with the proposed T JR. Peak stresses during flexion for the proposed design did not exceed 1.2 MPa, where as soft implants approach 100 MPa to 1,000 MPa for peak stress values. The proposed design, due to high stress tolerances with low deformation, along with functionality and biomechanics, seems to be an appropriate replacement for one-piece silicone implant.