期刊文献+

RNA干扰技术降低黑曲霉细胞工厂的内源蛋白背景 被引量:1

Reducing the Endogenous Protein Background of Aspergillus niger Cell Factory by RNA Interference Technology
原文传递
导出
摘要 利用RNA干扰技术(RNA interference,RNAi)改造黑曲霉细胞工厂,减少其内源蛋白表达背景。研究RNAi载体中反向互补片段特异性对RNA干扰的影响,同步干扰糖化酶基因glaA、淀粉酶基因amyA及蛋白酶调控因子基因prtT,并利用经RNA干扰改造的黑曲霉宿主SH-2表达异源脂肪酶基因tll。研究结果表明,不同长度的靶基因反向互补片段表现出不同程度的RNA干扰效应,载体pAMDS-RNAi-glaA388对糖化酶的干扰效果(94.40%)比载体pAMDS-RNAi-glaA784(70.60%)好;经三基因RNAi载体pAMDS-multi-RNAi改造的黑曲霉菌株中glaA、amyA、prtT的表达量仅为原始菌株的5.30%、17.10%和34.60%;利用经三基因RNAi载体改造的黑曲霉菌株表达脂肪酶tll,最高酶活达到97.27 U/mL,比利用原始菌株表达tll的最高酶活(73.05 U/mL)提高33.16%。因此,RNAi技术可以有效降低黑曲霉宿主内源蛋白的表达背景,有利于提高外源基因在黑曲霉细胞工厂中的表达水平和稳定性。 RNA interference(RNAi) technology was used to modify Aspergillus niger cell factory by reducing the expression level of its endogenous proteins.The effect of the specificity of reverse complementary sequence on RNA interference was investigated.Simultaneous interference of glucoamylase gene glaA,amylase gene amyA and protease regulator gene prtT was conducted in A.niger SH-2,and heterologous lipase tll was expressed in the RNAi-modified A.niger SH-2 host.Results illustrated that the reverse complementary sequence of different lengths exhibited RNA interference effect in different extent.RNAi vector pAMDS-RNAi-glaA388 with short reverse complementary sequence owned better interference effect(94.40%) than RNAi vector pAMDS-RNAi-glaA784 with long reverse complementary sequence(70.60%).Simultaneous interference of the three genes by pAMDS-multi-RNAi resulted in reduced expression of glaA(5.30%),amyA(17.10%) and prtT(34.60%) in A.niger SH-2.The expression of lipase tll in such RNAi-modified A.niger SH-2 reached the highest lipase activity of 97.27 U/ml,which was improved by 33.16% compared to tll expression in wild A.niger SH-2(73.05 U/mL).Thus,RNAi technology could effectively reduce the expression background of endogenous proteins in A.niger SH-2,and could improve the expression level and stability of heterologous genes in A.niger cell factory.
出处 《现代食品科技》 EI CAS 北大核心 2014年第5期178-184,共7页 Modern Food Science and Technology
基金 国家高技术研究发展(863)计划项目(2012AA022108) 广东省广州市高新区发展引导专项(2012B010900028) 华南理工大学广东省发酵与酶工程重点实验室开放基金项目(FJ2013005)
关键词 RNA干扰技术 黑曲霉 细胞工厂 糖化酶 淀粉酶 RNA interference Aspergillus niger cell factory glucoamylase amylase
  • 相关文献

参考文献12

  • 1谭海刚,李静,杨文浩.高产淀粉酶和蛋白酶的黑曲霉菌株的发酵条件优化[J].现代食品科技,2013,29(4):808-811. 被引量:6
  • 2James E, van Zyl W, van Zyl P, et al. Recombinant hepatitis B surface antigen production in Aspergillus niger: Evaluating the strategy of gene fusion to native glucoamylase [J]. Applied Microbiology and Biotechnology, 2012, 96(2): 385- 394. 被引量:1
  • 3Verdoes JC, Punt PJ, Schrickx JM, et al. Glucoamylase overexpression in Aspergillus niger: Molecular genetic analysis of strains containing multiple copies of the glaA gene [J]. Transgenic Research, 1993, 2(2): 84-92. 被引量:1
  • 4Prathumpai W, Flitter SJ, McIntyre M, et al. Lipase ction by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus [J]. Applied Microbiology and Biotechnology, 2004, 65(6): 714- 719. 被引量:1
  • 5Pel HJ, de Winde JH, Archer DB, et al. Genome encing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 [J]. Nature Biotechnology, 2007, 25(2): 221-231. 被引量:1
  • 6Maruyama J, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (deltaligD) in Aspergillus oryzae [J]. Biotechnology Letters, 2008, 30(10): 1811-1817. 被引量:1
  • 7Meyer V, Arentshorst M, El-Ghezal A, et al. Highly efficient gene targeting in the Aspergillus niger kusA mutant [J]. Journal of Biotechnology, 2007, 128(4): 770-775. 被引量:1
  • 8Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabdi tis elegans [J]. Nature, 1998, 391(6669): 806-811. 被引量:1
  • 9Qin LN, Cai FR, Dong XR, et al. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene [J]. Bioresource Technology, 2012, 109: 116-122. 被引量:1
  • 10赵臻,邱凯,蒯本科.人工microRNA干扰拟南芥AtCDKC;1和AtCDKC;2基因表达的初步研究[J].植物生理学通讯,2010,46(7):693-700. 被引量:4

二级参考文献31

  • 1张敬群,马业新,汪道文,肖建民.RNA干扰技术选择性下调大鼠血管紧张素Ⅱ 1a型受体及其作用的实验研究[J].中华心血管病杂志,2006,34(1):54-59. 被引量:12
  • 2陈军,宋维春,徐云升.从香蕉皮提取膳食纤维研究[J].食品科学,2007,28(1):99-101. 被引量:33
  • 3Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006). Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 18:1134-1151. 被引量:1
  • 4Cui XF, Fan BF, Scholz J, Chen ZX (2007). Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell, 19:1388-1402. 被引量:1
  • 5Fulop K, Pettko-Szandtner A, Magyar Z, Miskolczi P, Kondorosi E, Dudits D, Bako L (2005). The Medicago CDKC;1- CYCLINT;1 kinase complex phosphorylates the carboxyterminal domain of RNA polymerase II and promotes transcription. Plant J, 42:810-820. 被引量:1
  • 6Garriga J, Grana X (2004). Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene, 337:15-23. 被引量:1
  • 7Hirose Y, Ohkuma Y (2007). Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem, 141:601-608. 被引量:1
  • 8Huang YW, Tsay WS, Chen CC, Lin CW, Huang HJ (2008). Increased expression of the rice C-type cyclin-dependent protein kinase gene, Orysa;CDKC;1, in response to salt stress. Plant Physiol Biochem, 46:71-81. 被引量:1
  • 9Joubes J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C (2001). A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Physiol, 126:1403-1415. 被引量:1
  • 10Krisztina N, Thomas B, Alexis P, Tetsuya I, Halima M, Mitsuhiro A, Patrick L (2006). The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 18:2929-2945. 被引量:1

共引文献11

同被引文献42

  • 1康东亮.高产率糖化酶菌株的诱变选育[J].河南工业大学学报(自然科学版),2006,27(4):43-46. 被引量:4
  • 2张秀媛,袁永俊,何扩.糖化酶的研究概况[J].食品研究与开发,2006,27(9):163-166. 被引量:36
  • 3Sauer J,Sigurskjold B W,Christensen U.Glucoamylase:structure/function relationships and protein engineering[J].Biochim BiophysActa,2000,29(2):275-293. 被引量:1
  • 4Diaz-Sotomayor M,Quezada-Calvillo R,Avery S E,et al.Maltaseglucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis[J].Journal of Pediatric Gastroenterology and Nutrition,2013,57(6):704-712. 被引量:1
  • 5Metwally M,Sayed M,Osman M,et al.Bioenergetic consequences of glucoamylase produc-tion in carbon-limited chemostat cultures of Aspergillus niger[J].Antonie Van Leeuwenhoek,1991,59(1):35-43. 被引量:1
  • 6Liu Y,Meng Z,Shi R,et al.Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger[J].Journal Microbiology Biotechnoogyl,2015,25(1):33-43. 被引量:1
  • 7Lubertozzi D,Keasling J D.Developing Aspergillus as a host for heterologous expression[J].Biotechnol Adv,2009,27(1):53-75. 被引量:1
  • 8Tamayo-Ramo J A,Barends S,Lange D de,et al.Enhanced Production of Aspergillus niger Laccase-Like Multicopper Oxidases Through m RNA Optimization of the Glucoamylase E-ression System[J].Biotechnology and Bioengineering,2013,110(2):543-550. 被引量:1
  • 9Kraevec N,Milunovi c T,Lasnik MA,et al.Human granulocyte colony stimulating factor(G-CSF)produced in the filamentous fungus Aspergillus niger[J].Acta Chim Slov,2014,61(4):709-717. 被引量:1
  • 10Huifang Hua,Huiying Luo,Yingguo Bai,et al.A Thermostable Glucoamylase from Bispora sp.MEY-1 with Stability over a Broad p H Range and Significant Starch Hydrolysis Capacity[J].PLo S One,2014,9(11):1-3. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部