期刊文献+

基于SVD与改进EMD的滚动轴承故障诊断 被引量:5

Rolling Bearing Fault Diagnosis Based on SVD and Improved EMD
下载PDF
导出
摘要 针对经验模态分解(EMD)存在的模态混叠问题,提出一种奇异值分解(SVD)和改进经验模态分解相结合的信号分析新方法。该方法首先对故障信号进行SVD降噪,以消除随机干扰,再根据信号特征加入高频谐波信号并进行EMD进行分解,有效地减少模态混叠现象,最后对EMD分解得到的高频本征模态分量(IMF)进行代数运算得到故障冲击成分,经Hilbert包络分析,提取出故障特征信息。仿真信号分析了这种方法的实施过程,并将该方法成功运用于滚动轴承内圈和外圈故障的诊断中。实验结果证明:该方法能够有效地提取滚动轴承故障特征信息,实现故障诊断。 Considering the mode mixing in empirical mode decomposition,a novel method that combines singular value decomposition( SVD) with improved empirical mode decomposition( EMD) is proposed. The first step of this method is to reduce the random noise in fault signal by the SVD,and then the high frequency harmonic is added by the characteristic of original signal before EMD. The preprocessed signal is decomposed by EMD to restrain the mode mixing effectively. Finally,envelope demodulation is performed for the intrinsic mode function( IMF) of shock signal and as a result,the fault feature was extracted successfully. The implementation process was analyzed by simulated signal and this method has been successfully applied in inner race and outer race of rolling bearing fault diagnosis. The results show that this method can extract the fault information of rolling bearing effectively and realize the fault diagnosis.
作者 文成 周传德
出处 《机械科学与技术》 CSCD 北大核心 2014年第5期706-710,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51205431) 重庆市科技攻关计划项目(CSTC2012gg-yyjs70012)资助
关键词 奇异值分解 改进经验模态分解 高频谐波 滚动轴承 故障诊断 computer simulation demodulation efficiency eigenvalues and eigenfunctions failure analysis feature extraction functions high frequency harmonics improved empirical mode decomposition matrix algebra roller bearings rolling bearing singular value decomposition
  • 相关文献

参考文献9

二级参考文献56

共引文献352

同被引文献60

  • 1杨青,孙佰聪,朱美臣,杨青川,刘念.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. 被引量:13
  • 2陶庭叶,何伟,高飞,吴兆福.综合电离层残差和超宽巷探测和修复北斗周跳[J].中国惯性技术学报,2015,23(1):54-58. 被引量:15
  • 3于飞,李升娟,马骁,刘喜梅.基于SVM的超高压直流输电系统故障诊断模型研究[J].系统仿真学报,2007,19(14):3180-3183. 被引量:2
  • 4Li B,Zhang PL, Mi S S,et al. An adaptive morphological gradientlifting wavelet for detecting bearing defects [J]. Mechanical Sys-tems and Signal Processing, 2012,29 (9): 415 - 427. 被引量:1
  • 5McDonald G L,Zhao Q, Zuo M J. Maximum correlated kurtosisdeconvolution and application on gear tooth chip fault detection[J]. Machanical Systems and Signal Processing, 2012,33: 237-255. 被引量:1
  • 6Yiakopoulos C T,Gryllias K C, Antoniadis I A. Rolling elementbearing fault detection in industrial environments based on a K —means clustering approach [J]. Expert Systems with Applications,2011,38 (3) : 2888-2911. 被引量:1
  • 7Ming Y, Chea J , Dong G M. Weak fault feature extraction of roll-ing bearing based on cyclic Wiener filter and envelope spectrum [J].Machanical Systems and Signal Processing, 2011, 25 ( 5 ): 1773-1785. 被引量:1
  • 8The case western reserve university bearing data center website[EB/OL ]. http: //www. eecs. case, odu/laboratory/bearing.2013 -05 -012. 被引量:1
  • 9HERNANDEZ A, ESPINOSA-JUAREZ E, CASTRO R M, et al. SVD applied to voltage sag state estimation[J]. IEEE Transactions on Power Delivery, 2013, 28(2):866-874. 被引量:1
  • 10ZHANG L, LI M, JI T, et al. Morphology singular en- tropy-based phase selector using short data window for transmission lines[J]. IEEE Transactions on Power Deliv- ery, 2014, 29(5) :2162-2171. 被引量:1

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部