期刊文献+

基于压缩感知的主成分分析7.0T磁共振稀疏图像快速重构

Rapid Reconstruction of Sparse MRI T2 Map at 7.0 Tesla by Principal Component Analysis using Compressed sensing
下载PDF
导出
摘要 目的探讨基于压缩感知理论的主成分分析法对磁共振稀疏T2质子加权像的快速重构。方法利用安捷伦7 T活体动物磁共振成像对正常SD大鼠的大脑进行T2质子加权像欠采样扫描,并在MATLAB上运用主成分分析法对所得图像进行重构。结果利用主成分分析方法可使得磁共振稀疏图像成像速度提高4倍。结论基于压缩感知理论的主成分分析法实现快速磁共振成像将在临床上具有很好的发展潜力。 Objective Aim to reconstruct MRI sparse T2 map rapidly by Principal Component Analysis based on the theory of Compressed sensing. Methods The sparse T2 map of in vivo SD normal mice brain experiments were conducted under an Agilent 7.0 T animal MRI system. And the reconstructed images were obtained by principal component analysis algorithm by the software of MATLAB. Results The spatial resolution of the reconstructed T2 map is satisfied when the data acquisition speed is 4 times over the based one. Conclusion The performance of the proposed algorithm of accurate MRI T2 map in reducing scan time would have much practical value in clinical application.
出处 《功能与分子医学影像学(电子版)》 2013年第2期40-42,共3页 Functional and Molecular Medical Imaging(Electronic Edition)
基金 国家自然科学基金重点项目(30930027) 广东省自然科学基金(S20130100013372) 广东省大学生创新实验项目(1056010106)
关键词 压缩感知 主成分分析法 MATLAB compressed sensing principal component analysis MATLAB
  • 相关文献

参考文献5

  • 1Deyu Meng,Qian Zhao,Zongben Xu.Improve robustness of sparse PCA by L 1 -norm maximization[J].Pattern Recognition.2011(1) 被引量:1
  • 2高陈燕.主成分分析法数学推导方法的研究[J].衡水学院学报,2010,12(4):7-8. 被引量:4
  • 3Dan Xiao,Bruce J. Balcom.Two-dimensional T 2 distribution mapping in rock core plugs with optimal k -space sampling[J].Journal of Magnetic Resonance.2012 被引量:1
  • 4张桂珊,肖刚,戴卓智,沈智威,李胜开,吴仁华.压缩感知技术及其在MRI上的应用[J].磁共振成像,2013,4(4):314-320. 被引量:32
  • 5ChuanHuang,Christian G.Graff,Eric W.Clarkson,AliBilgin,Maria I.Altbach.T<sub>2</sub> mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing[J].Magn Reson Med.2012(5) 被引量:1

二级参考文献33

  • 1冯晓源,刘含秋.功能磁共振成像在中国的研究现状[J].中国医学计算机成像杂志,2004,10(5):292-298. 被引量:19
  • 2Shannon CE. Communication in the presence of noise. Proceedings IEEE, 1949, 37: 10-21. 被引量:1
  • 3Cand6s EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions, 2006, 52(2): 489-509. 被引量:1
  • 4Donoho D L. Compressed sensing. Information Theory, IEEE Transactions, 2006, 52(4): 1289-1306. 被引量:1
  • 5Baraniuk RG. Compressive sensing [lecture notes]. Signal Processing Magazine IEEE, 2007, 24(4): 118-121. 被引量:1
  • 6Cand6s EJ, Wakin MB. An introduction to compressive sampling. Signal Processing Magazine IEEE, 2008, 25(2): 21-30. 被引量:1
  • 7Kutyniok G. Compressed sensing: theory and applications, arXiv, 2012: 1203, 3815. 被引量:1
  • 8Jung H, Ye JC. Performance evaluation of accelerated functional MRI acquisition using compressed sensing. Biomedical Imaging: from nano to macro, 2009. IEEE, 2009: 702-705. 被引量:1
  • 9Vaswani N. Kalman filtered compressed sensing. Image Processing, 2008. IEEE, 2008: 893-896. 被引量:1
  • 10Vasanawala SS, Alley MT, Hargreaves BA, et al. Improved pediatric MR imaging with compressed sensingl. Radiology, 2010, 256(2): 607-616. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部