期刊文献+

二维盲图像恢复算法的研究

Study of Two-Dimensional Algorithms for Blind Image Restoration
下载PDF
导出
摘要 通过对现有的二维盲图像恢复算法的探讨,提出了两种基于L1双正则化的二维盲图像恢复算法。一种是最小化L2-L1代价函数,为了实现边缘保持和噪声抑制;另一种是通过最小化L1-L1代价函数来处理非高斯噪声的情况。所提的算法是一种广义的梯度算法,它通过引入绝对值函数的弱导数来处理不可微的情况。实验结果表明,与NAS-RIF算法和DR算法相比,所提出的两种二维算法能够更快速地获得好的图像估计。 By exploring the existing two-dimensional (2-D) algorithms for blind image restoration, this paper proposes two new two-dimensional algorithms for blind image restoration based on an L1 double regularization approach. One is formulated as the minimization of a L2-L1 cost function to achieve edge preservation and noise suppression. The other is viewed as the minimization of a L1-L1 cost function for blind image restoration under non-guassian noise environments. Thus a generalized gradient algorithm is introduced by using a weak derivative of the absolute value function to deal with the non-differentiable case. Experimental results show that the proposed two-dimensional algorithms can obtain a better restored image and the estimated PSF with a faster speed than both the NAS-RIF algorithm and the DR algorithm.
出处 《三明学院学报》 2014年第2期6-13,共8页 Journal of Sanming University
基金 龙岩学院服务海西面上项目(LYXY2011071)
关键词 盲图像恢复 L1双正则化方法 二维实现算法 广义梯度算法 blind image restoration L1 double regularization approach 2-D implementation algorithm generalized gra- dient algorithm
  • 相关文献

参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部