期刊文献+

热分解法制备SPE电解池一体化氧阳极 被引量:2

Preparing integrated oxygen anode for SPE electrolyzer by thermal decomposition method
下载PDF
导出
摘要 以氯铱酸为前驱体,钛网为支撑体,采用热分解法制备一体化IrO2/Ti氧阳极,热压法制备膜电极组件(MEA)。用SEM、循环伏安、交流阻抗、极化曲线及单体电解池测试,研究煅烧温度对氧阳极形貌及性能的影响。在300℃、350℃及400℃煅烧制备的氧阳极,表面以裂缝为主,且随着煅烧温度的升高,裂纹的宽度减小,孔隙率增加;在450℃、500℃煅烧制备的氧阳极,表面裂纹基本消失,同时生成致密的催化剂簇。400℃煅烧制备的氧阳极的析氧催化活性最好,在50℃、500 mA/cm2时,单体电解池可稳定运行203 h。 Using chloroiridic acid as the precursor and titanium mesh as the support, integrated oxygen anode of IrO2/Ti was pre- pared by thermal decomposition method and membrane electrode assembly(MEA) was prepared via hot-press method. The effect of calcination temperature on the electrode morphology and performance was investigated by SEM, cyclic vohammogram, A. C. impe- dance, polarization curve and single electrolyzer tests. The electrode surface was mainly cracks, as the calcination temperatures were 300 ℃ ,350 ℃ and 400 ℃, reduced crack width and increased porosity was obtained with the increasing of calcination temperature. The cracks disappeared instead of dense catalyst clusters when the calcination temperatures were 450 ℃ and 500℃. The optimal calcination temperature was 400 ℃ and a test of such electrode in a single cell at 50 ℃ and 500 mA/cm2 showed good stability with a period of 203 h.
出处 《电池》 CAS CSCD 北大核心 2014年第2期64-67,共4页 Battery Bimonthly
基金 国家自然科学基金(51274028) 北京市自然科学基金(2122041)
关键词 固体聚合物电解质水电解 一体化氧阳极 煅烧 热分解 氧化铱 solid polymer electrolyte integrated oxygen anode calcination thermal decomposition iridium oxide
  • 相关文献

参考文献8

二级参考文献41

共引文献41

同被引文献28

  • 1王诚,毛宗强,徐景明,谢晓峰,杨立寨.碳纸对燃料电池自增湿性能的影响[J].高等学校化学学报,2005,26(1):125-128. 被引量:7
  • 2Nehrir M.H.,Wang C.,Strunz K.,Aki H.,Ramakumar R.,Bing J.,Miao Z.,Salameh Z.,Ieee Transactions on Sustainable Energy,2011,2(4),392-403. 被引量:1
  • 3Carmo M.,Fritz D.L.,Merge J.,Stolten D.,Int.J.Hydrogen Energy,2013,38(12),4901-4934. 被引量:1
  • 4Ursua A.,Gandia L.M.,Sanchis P.,Proceedings of the Ieee,2012,100(2),410-426. 被引量:1
  • 5Ito H.,Maeda T.,Nakano A.,Takenaka H.,Int.J.Hydrogen Energy,2011,36(17),10527-10540. 被引量:1
  • 6Grigoriev S.A.,Millet P.,Volobuev S.A.,Fateev V.N.,Int.J.Hydrogen Energy,2009,34(11),4968-4973. 被引量:1
  • 7Goni-Urtiaga A.,Presvytes D.,Scott K.,Int.J.Hydrogen Energy,2012,37(4),3358-3372. 被引量:1
  • 8Adams R.,Shriner R.,J.Am.Chem.Soc.,1923,45(9),2171-2179. 被引量:1
  • 9Li G.,Yu H.,Song W.,Dou M.,Li Y.,Shao Z.,Yi B.,Chem.Sus.Chem.,2012,5(5),858-861. 被引量:1
  • 10Kokoh K.B.,Mayousse E.,Napporn T.W.,Servat K.,Guillet N.,Soyez E.,Grosjean A.,Rakotondrainibe A.,Paul-Joseph J.,Int.J.Hydrogen Energy,2014,39(5),1924-1931. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部