期刊文献+

演化参数反演方法 被引量:4

An Evolutionary Parameter Inversion Approach
下载PDF
导出
摘要 给出了一类基于演化计算的演化参数反演方法 ,此类方法既可以给定参数的函数类 ,用遗传算法 (Ge neticAlgorithms)来反演参数的最优估计值 ,也可以不指定函数类形式 ,用遗传程序设计 (GeneticProgramming)的方法反演出最优的函数模型 ,使参数反演实现客观化、自动化 .由此建立反演系统后 ,在使用过程中可以根据最新获得的数据对模型中的物理参数作适时校准 ,一旦发现预报误差较大 ,就利用演化算法及时修正方程中的参数以改进预报 .运用该方法于椭圆边值问题的物理参数反演的数值模拟 ,证实了此方法的有效性 ,为物理模型参数的反演提供了一种崭新的实用方法 . An inverse problem is to determine unknown causes based on observation of their effects. Such problems often arise in scientific research and engineering practice. We presented a general methodology based on evolutionary algorithms (EAs) for the parameter estimation of inverse problems. Giving function class of unknown parameter, genetic algorithms (GA) is used to evolve the optimal coefficient of linear combination of basis function. Without giving the class of parameter function, genetic programming (GP) is used to evolve the appropriate parameter function structure and coefficient such that the identification of parameter is objective and automatically. When applying ordinary differential equations (ODEs) or partial differential equations (PDEs) including unknown parameter to prediction models, the parameter is adaptively calibrated according to the recent observation data such that the prediction is improved by evolutionary computation. We apply this method to the numerical recovery of spatially varying physical parameters in elliptic boundary values problems. The successful numerical results demonstrated that the proposed method has the potential to solve a wide range of inverse parameter identification problems in a systematic and robust way.
出处 《武汉大学学报(自然科学版)》 CSCD 北大核心 2001年第1期37-41,共5页 Journal of Wuhan University(Natural Science Edition)
基金 国家自然科学基金!(6970 30 1 1 ) 武汉市青年科技晨光计划资助项目! (2 0 0 0 50 0 4 0 4 0 )
关键词 演化计算 遗传算法 遗传程序设计 参数估计 反问题 演化参数反演方法 椭圆边值问题 evolutionary algorithms genetic algorithms genetic programming parameter estimation inverse problem
  • 相关文献

参考文献16

  • 1Alifanov.Inverse Heat Transfer Problems[M].New York:Springer-Verlag,1994. 被引量:1
  • 2Romanov V G.Inverse Problems of Mathematical Physics[M].Netherlands:VNU Science Press BV,1987. 被引量:1
  • 3Tarantola A.Inverse Problem Theory:Method for Data Fitting and Model Parameter Estimation[M].Netherlands:Elsevier Science Publishers BV,1987. 被引量:1
  • 4Marchuk G I.Methods of Numerical Mathematics[M].New York:Springer-Verlag,1981. 被引量:1
  • 5PAN Zheng-jun,KANG Li-shan,CHEN Yu-ping.Evolutionary Computation[M].Beijing:Tsinghua University Press and Guangxi Sciences and Technology Press,1998(Ch). 被引量:1
  • 6Michalwicz Z.Genetic Algorithms + Data Structures = Evolution Programms[M].Berlin:Springer-Verlag,1994. 被引量:1
  • 7Dasqupta D,Michalwicz Z.Evolutionary Algorithms in Engineering Applications[M].Berlin:Springer-Verlag,1997. 被引量:1
  • 8Ito K,Kunisch K.The Augmented Lagrangian Method for Parameter Estimation in Elliptic Systems[J].SIAM J Control and Optimization,1990,28(1):113-136. 被引量:1
  • 9Guenther R,Hudspeth R,Mcdougal W.Remarks on Parameter IdentificationⅠ[J].Numerical Math,1985,47(2):355-361. 被引量:1
  • 10Heinz W,Martin H,Anderas N.Regularization of Inverse Problem[M].Dordrecht:Kluwer,1996. 被引量:1

同被引文献30

  • 1Dongqing LI Jun TAO Qingguo Meng Hongyuan FANG.Indirect Measurement of Material Thermal and Mechanical Properties during Welding[J].Journal of Materials Science & Technology,2003,19(z1):173-175. 被引量:1
  • 2熊先仁,杨菊梅,张旅波,黄锦文.洪门水电站土石坝反馈分析[J].江西科学,1996,14(3):129-135. 被引量:2
  • 3吴建成 张大力 刘家琦.一维波动方程反问题求解的正则化方法.计算物理,1995,12(3):415-420. 被引量:2
  • 4Tikhonov A N, Arsenin V Y. Solution o Ill-posed Problems[M]. New York: John Wiley and Sons, 1977. 被引量:1
  • 5ganerjee A, Abu-Mahfouz I. Evolutionary algo rithn> based parameter identification for non linear dynamical systems [C]//IEEE Congress on Evolutio mry (7ore putatiorn(CEC 2011 ). Washington, D C: 1EEE, 2011:1 5. 被引量:1
  • 6Mariani V C, Neekel V J, Afonso I. D, etal. Differ ential evolution with dynamic adaptation of mutation factor applied to inverse heat transfer problem [C]// IEEE Congress on Evolutionary Computation (CEC 2010). Washington, D C.. IEEE, 2010.. 1-6. 被引量:1
  • 7Wang J, Wu Z J, Wang H, et al. A novel particle swarm algorithm for solving parameter identification problems on graphics hardware [J]. International Journal of Computational Science and Engineering, 2011, 4(1): 43-51. 被引量:1
  • 8Danciu D. Numerics for hyperbolic partial differential equations (PDE) via cellular neural networks (CNN) [C]//2013 2nd International Conference on', Systems and Computer Science (ICSCS). Washington, D C: IEEE, 2013: 183-188. 被引量:1
  • 9Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optim-ization over continu- ous space [J]. Journal of Global Optimization, 1997, 11: 341-359. 被引量:1
  • 10Rudin L I, Stanley O, Emad F. Onlinear total varia- tion based noise removal algorithms[J]. Physical D Nonlinear Phenomena, 1992,60(1) ..259-268. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部