期刊文献+

传统汽油机改进成混合动力Atkinson循环专用发动机的节油效果 被引量:9

Fuel saving effect of Atkinson cycle engine applied to hybrid vehicle converted from conventional gasoline engine
下载PDF
导出
摘要 基于传统汽油机的实测数据建立GT-POWER模型;分析改进成Atkinson循环发动机的节油潜力及爆震指数。先选择3种方案并利用GT-POWER模型对部分负荷与万有特性对Atkinson循环进行计算,3种方案分别为:(1)只用可变气阀正时(VVT)技术推迟进气阀关闭时刻;(2)增加凸轮型线包角并用VVT技术推迟进气阀关闭时刻,(3)在第二方案上将压缩比由10增加到12。计算结果表明:方案三节油效果明显,在5个典型工况及全转速范围上中小负荷节油率达7%以上。再分析推迟排气阀开启时刻对实现部分负荷节油基本没有应用价值;传统汽油机改进成Atkinson循环发动机的最佳方案为增加进气凸轮型线包角使进气持续期为350o,用VVT技术推迟进气阀关闭时刻来调节负荷,再将压缩比由10增加到12,而排气凸轮型线及相位不变。 To study the fuel saving effect of the Atkinson cycle engine, a GT-POWER simulation model was built and calibrated against experimental data; the fuel saving potential and the knock intensity were analyzed after the engine was improved into Atkinson cycle. Firstly, three means were studied and modeled. (1) Delay intake valve timing by variable valve timing (VVT); (2) Increase intake duration to 350° with delaying intake valve timing by VVT; (3) Add geometry compress ratio from 10 to 12 on top of the second method. The results demonstrate that the third method has the obvious fuel saving effect, in which fuel saving ratio exceeds 7% on five typical conditions and at all speeds with low and middle load. Secondly, some work was done to analyze the fuel saving effect of delaying exhaust valve timing on partial loads, and little effect was discovered by this means. The most effective method is increasing intake duration to 350o based on the crankshaft angle, delaying the intake valve closing time to adjust the load by VVT and adjusting the geometry compress ratio from 10 to 12, while the exhaust structure and valve timing remain unchanged.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期1302-1311,共10页 Journal of Central South University:Science and Technology
基金 国家高技术研究发展计划("863"计划)项目(2012AA111801 2012AA111703)
关键词 Atkinson循环 泵气损失 爆震指数 可变气阀正时 节油率 Atkinson cycle pumping loss knock intensity variable valve timing fuel saving ratio
  • 相关文献

参考文献15

二级参考文献25

  • 1李名林.汽车产品生态设计方法与评价指标体系探讨[J].汽车科技,2007(1):32-35. 被引量:6
  • 2田永祥,杜爱民,陈礼璠.混合动力汽车用Atkinson循环发动机的探讨[J].汽车科技,2007(4):31-34. 被引量:14
  • 3黄海燕.汽车发动机学试验教程[M].北京:清华大学出版社.2009. 被引量:1
  • 4杨万里,徐敏.应用BOOST进行发动机热力学仿真[Z].芜湖:奇瑞汽车有限公司汽车工程研究院,2000. 被引量:1
  • 5Al-Sarkhi A, Akash B, Abu-Nada E. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions [ J ]. Energy Conversion and Management ,2005,46:2637 - 2655. 被引量:1
  • 6Shuhn-Shyumg Hou. Comparison of performance of air standard Atkinson and Otto cycle with heat transfer considerations [ J ]. Energy Conversion and Management, 2007,48 : 1683 - 1690. 被引量:1
  • 7Benajes J, Serrano J R, Molina S, et al. Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine [ J ]. Energy Conversion and Management ,2009,50 : 174 - 183. 被引量:1
  • 8Yingru Zhao,Jincan Chen. Performance analysis and parametrie optimum criteria of an irreversible Atkinson heatengine [ J ]. Applied Energy,2006,83 : 789 - 800. 被引量:1
  • 9杨妙梁.汽车发动机环境与保护[M].北京:中国物质出版社.2001. 被引量:1
  • 10Michael K Anderson,Dennis N Assanis,Zoran S Filipi.First and Second Law Analyses of Naturally-Aspirated,Miller Cycle,SI Engine with Late Intake Valve Close [J],SAE Paper 980889. 被引量:1

共引文献66

同被引文献50

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部