期刊文献+

基于余弦距离的人体运动数据行为分割算法 被引量:4

Human behavior segmentation method based on cosine distance for motion data
下载PDF
导出
摘要 对人体运动捕捉数据进行行为分割是人体运动数据分析与合成中的关键处理步骤,为此,提出一种新的人体运动数据行为分割算法。采用骨骼夹角直方图刻画人体运动统计特征,使用余弦相似度作为人体运动数据骨骼夹角直方图特征的相似性度量,实现对运动行为的自动分割。对于给定的人体运动捕捉序列,首先定义滑动比较窗口,计算当前窗口范围内运动序列前、后2部分骨骼夹角直方图统计特征的余弦相似度,然后通过在运动序列上滑动该窗口,获得运动序列的余弦相似度曲线,曲线最小值位置即为不同类型行为的分割点。在CMU人体运动捕捉数据库上进行数值实验。研究结果表明:本文算法能够实现对人体运动捕捉数据的自动行为分割;与广泛采用的基于PPCA的行为分割方法相比,本文算法具有良好的性能。 Considering that the human motion segmentation is one important process for human motion data analysis and synthesis, a novel segmentation algorithm for motion capture data was proposed to segment motions into distinct behaviors. The method was based on the assumption that motions with the same type had similar histogram of angle between bones. Angle histogram was employed to represent the human motion, and cosine distance was utilized to measure the similarity of motions represented by angle histograms. A motion sequence was given, and a sliding window which moved from the starting frame to the end was firstly defined. In each window, the cosine similarity between the first half window and the second half was computed, and so a cosine distance curve with the motion was obtained. The minimums of the curve identified the cut between different types of motion behaviors. The present method was tested on the Carnegie Mellon Motion Capture database. The results show that the method can achieve the automatic segmentation for human motion capture data, and has good motion behavior segmentation performance compared with the classical PPCA based segmentation algorithm.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期1128-1136,共9页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(61100143 61370128 61272353) 教育部新世纪人才计划项目(NCET-13-0659) 北京高校青年英才计划项目(YETP0583) 高等学校基本科研业务费项目(2012JBM124)
关键词 人体运动分割 运动捕捉数据 骨骼夹角 余弦距离 曲线简化 human motion segmentation motion capture data joint angle cosine distance curve simplification
  • 相关文献

参考文献25

  • 1Moeslund T B,Hilton A,Kruger V.A survey of advances invisionbasedhuman motion capture and analysis[J].ComputerVision and Image Understanding,2006,104(2/3):90-126. 被引量:1
  • 2肖俊,庄越挺,吴飞.三维人体运动特征可视化与交互式运动分割[J].软件学报,2008,19(8):1995-2003. 被引量:15
  • 3Pomplun M,Matari- M J.Evaluation metrics and results ofhuman arm movement imitation[C]//Proceedings of InternationalConference on Humanoid Robotics (Humanoids 2000).Boston,USA:IEEERAS,2000:7-8. 被引量:1
  • 4Fod A,Mataric M,Jenkins O C.Automated derivation ofprimitives for movement classification[J].Autonomous Robots,2002,12(1):39-54. 被引量:1
  • 5Barbic J,Safonova A,Pan J Y,et al.Segmenting motion capturedata into distinct behaviors[C]//Proceedings of InternationalConference on Graphics Interface.Ontario,2004:185-194. 被引量:1
  • 6肖俊..智能人体动画若干关键技术研究[D].浙江大学,2007:
  • 7杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 8Peng S J.Motion segmentation using central distance featuresand lowpassfilter[C]//Proceedings of International Conferenceon Computational Intelligence and Security.Nanning,China:IEEE,2010:223-226. 被引量:1
  • 9Arikan O,Forsyth D A,O’Brien J F.Motion synthesis fromannotations[J].ACM Transactions on Graphics,2003,22(3):402-408. 被引量:1
  • 10Kahol K,Tripathi P,Panchanathan S,et al.Gesture segmentationin complex motion sequences[C]//Proceedings of InternationalConference on Image Processing(ICIP 2003).Barcelona,Spain:IEEE,2003:II:105-108. 被引量:1

二级参考文献32

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3冯林,沈骁,孙焘,于孝航,潘晓雯.基于运动能量模型的人体运动捕捉数据库的检索[J].计算机辅助设计与图形学学报,2007,19(8):1015-1021. 被引量:6
  • 4Wolf W.Key frame selection by motion analysis[C] //Proceedings of the 1996 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),Atlanta,1996:1228-1231 被引量:1
  • 5Zhuang Yueting,Rui Yong,Huang Thomas S.Adaptive key Frame extraction using unsupervised clustering[C] //Proceedings of IEEE International Conference on Image Processing(ICIP'98),Chicago,1998:866-870 被引量:1
  • 6Liu F,Zhuang Y,Wu F,et al.3D motion retrieval with motion index tree[J].Computer Vision and Image Understanding,2003,92(2/3):265-284 被引量:1
  • 7Lim I S,Thalmann D.Key-posture extraction out of human motion data by curve simplification[C] //Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),Istanbul,2001,2:1167-1169 被引量:1
  • 8Lee Jehee,Chai Jinxiang,Reitsma Paul S A,et al.Interactive control of avatars animated with human motion data[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Antonio,2002:491-500 被引量:1
  • 9Chui Chih-Yi,Chao Shih-Pin,Wu Ming-Yang,et al.Content-based retrieval for human motion data[J].Journal of Visual Communication and Image Representation,2004,15(3):446-466 被引量:1
  • 10Mueller Meinard,Roeder Tido,Clausen Michael.Efficient content-based retrieval of motion capture data[J].ACM Transactions on Graphics,2005,24(3):677-685 被引量:1

共引文献44

同被引文献44

  • 1戴维凯,张胜,吴峰,蓝文祥.嵌入空间的复杂网络关联维数研究[J].南昌航空大学学报(自然科学版),2020(3):25-33. 被引量:2
  • 2杨跃东,王莉莉,郝爱民,封春升.基于几何特征的人体运动捕获数据分割方法[J].系统仿真学报,2007,19(10):2229-2234. 被引量:9
  • 3Barbi: J, Safonova A, Pan J Y, et al. Segmenting mo- tion capture data into distinct behaviors [ C ] //Procee- dings of Graphics InteoCace 2004. London, Ont, Cana- da: Canadian Information Processing Society, 2004 : 185 - 194. 被引量:1
  • 4Zhou F, De la Torte F, Hodgins J K. Hierarchical a- ligned cluster analysis for temporal clustering of human motion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (3): 582- 596. 被引量:1
  • 5Gong D, Medioni G, Zhu S K, et al. Kernelized tempo- ral cut for online temporal segmentation and recognition [ C ]//Proceedings of the 12th European Conference on Computer Vision. Heidelberg: Springer Verlag, 2012 : 229 - 243. 被引量:1
  • 6Ilg W, Bakir G H, Mezger J, et al. On the representa- tion, learning and transfer of spatio-temporal movement characteristics [ J ]. International Journal of Humanoid Robotics, 2004, 1(4): 613-636. 被引量:1
  • 7Fod A, Mataric M J, Jenkins 0 C. Automated derivation of primitives for movement classification [ J ]. Autono- mous Robots, 2002, 12(1) : 39 -54. 被引量:1
  • 8Halit C, Capin T. Muhiscale motion saliency for key- frame extraction from motion capture sequences [ J ]. Computer Animation and Virtual Worlds, 2011, 22( 1 ) : 3 -14. 被引量:1
  • 9Zhao L W, Badler N I. Acquiring and validating motion qualities from live limb gestures [ J 1- Graphical Models, 2005, 67(1) : 1 -16. 被引量:1
  • 10Gibet S, Marteau P F. Approximation of curvature and velocity for gesture segmentation and synthesis [ C ]// Proceedings of the 7th International Gesture Workshop. Heidelberg : Springer :erlag, 2009 : 13 - 23. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部