期刊文献+

高斯牛顿迭代法解算非线性Bursa-Wolf模型的精度分析 被引量:5

Precision of Gauss-Newton iterative algorithm for solving nonlinear Bursa-Wolf model
原文传递
导出
摘要 在参数估计中,非线性模型直接精密解算缺乏高效的方法,线性近似存在模型误差,而线性化取高次项导致模型复杂不具实用性。研究表明经典边角网可以不考虑线性近似的模型误差问题,本文以任意旋转角的非线性Bursa-Wolf模型参数解算为例,以不存在模型误差的直接严密解为参照对比,采用线性近似模型的高斯牛顿迭代方法解算非线性模型。试验结果显示,线性化取一次项虽然存在模型误差,但高斯牛顿迭代能以指定精度收敛,可获得更优于非线性严密直接解的精度,该发现对非线性模型解算的研究具有参考价值。 It is very difficult to find an accurate and effective method for solving a nonlinear model directly in parameters estimation.Model errors maybe occur in linearization approximation process.The high order terms make the model complicated and deduce its practicability.Previous studies show that it needs not to consider the model errors in classical triangulateration network adjustment.Based on the nonlinear Bursa-Wolf model of three-dimentional rectangular coordinate transformation with any rotation angle,this paper discussed two algorithms for solving the nonlinear model,Lodrigues direct algorithm and Gauss-Newton iterative method.Though model errors exist in the linearization approximation process,the Gauss-Newton iterative method could converge at an appointed precision.Examples showed the calculation precision of Gauss-Newton iterative algorithm,which bases on the linearization approximation model,would be better than that of Lodrigues direct solution.The discovery has reference value for solving nonlinear model researches.
出处 《测绘科学》 CSCD 北大核心 2014年第5期93-95,共3页 Science of Surveying and Mapping
基金 国家公益性行业科研专项(201111013)
关键词 非线性模型 线性近似 高斯-牛顿迭代法 Bursa-Wolf模型 非线性直接严密解 nonlinear model linearization approximation Gauss-Newton iterative method Bursa-Wolf model nonlinear direct solution
  • 相关文献

参考文献11

二级参考文献38

共引文献235

同被引文献47

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部