期刊文献+

一类非线性抛物型方程反问题的中心差分正则化算法 被引量:1

Central Difference Regularization Algorithm for a Kind of Inverse Problems of Nonlinear Parabolic Equations
下载PDF
导出
摘要 大量线性与非线性抛物型方程反问题以各种不同形式出现在不同应用背景下,这类方程的研究有重要的应用价值,但是非线性抛物型方程反问题存在不适定性,文中利用半中心差分法思想设计了稳定的数值算法求解反问题,研究了一类半线性抛物型方程逆时反问题的数值算法并进行数值模拟。数值模拟结果与精确解相吻合,说明了算法的有效性。 A large number of inverse problems of linear and nonlinear parabolic equations occur in different application contexts in various forms.It is extremely important to study on these equations,but inverse problems of nonlinear parabolic equations are ill-posed.This paper uses semi-discrete central difference method to design a stable numerical algorithm to solve inverse problems,studies a kind of numerical algorithm to solve inverse problems of semi-linear parabolic equations,and conducts numerical simulation. Results of numerical simulation are consistent with exact solutions,indicating that this algorithm is effective.
出处 《浙江理工大学学报(自然科学版)》 2014年第3期320-324,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金(NSFC11071221 NSFC10561001) 浙江理工大学科研基金(KY2012015)
关键词 非线性抛物型 反问题 半中心差分 数值模拟 爆破时间 nonlinear parabolic inverse problems semi-discrete central difference numerical simulation blow up time
  • 相关文献

参考文献8

  • 1Hoang Q P, Duc T D. A nonlinearly backward heat problem: uniqueness, regularization and error estimate[J].Applicable Analysis, 2006, 85(6-7): 641-657. 被引量:1
  • 2Jarny Y, Ozisik M N, Bardon J P. A general optimization method using adjoint equation for solving multidimensional inverse heat conduction[J].International Journal of Heat and Mass Transfer, 1991, 34(11): 2911-2919. 被引量:1
  • 3Marbán J M, Palencia C. A new numerical method for backward parabolic problems in the maximumnorm setting[J].SIAM Journal on Numerical Analysis, 2002, 40(4): 1405-1420. 被引量:1
  • 4葛美宝,徐定华.一类热传导方程逆时反问题的数值解法[J].浙江师范大学学报(自然科学版),2011,34(1):59-63. 被引量:4
  • 5Xiong X T, Fu C L, Qian Z. Two numerical methods for solving a backward heat conduction problem[J].Applied Mathematics and Computation, 2006, 179(1): 370-377. 被引量:1
  • 6曾苏华,徐定华.一类非线性抛物方程扩散系数及初始分布同时反演的变分伴随法[J].江西科学,2007,25(5):598-601. 被引量:2
  • 7Xu D H, Zhang H L. Uniqueness and stability estimates for a semilinearly parabolic backward problem, boundary value problems, integral equations and related problems[C]//Singapore: Proceedings of the 3rd International Conference, 2011: 140-153. 被引量:1
  • 8Shidfar A, Fakhraie M, Pourgholi R, et al. A numerical solution technique for a one dimensional inverse nonlinear parabolic problem[J].Applied Mathematics and Computation, 2007, 184(2): 308-315. 被引量:1

二级参考文献15

  • 1葛美宝,徐定华,王泽文,张文.一类抛物型方程反问题的数值解法[J].东华理工学院学报,2006,29(3):283-288. 被引量:7
  • 2Lattes R,Lions J L.The Method of Quasi-Reversibility,Applications to Partial Differential Equations[M].New York:Elsevier,1969. 被引量:1
  • 3Showalter R E.The final value problem for evolution equations[J].J Math Anal Appl,1974,47(5):563-572. 被引量:1
  • 4Ames K A,Gordon W C,Epperson J F.A comparison of regularizations for an ill-posed problem[J].Math Comput,1998,67(12):1451-1471. 被引量:1
  • 5Xiong Xiangtuan,Fu Chuli,Qian Zhi.Two numerical methods for solving a backward heat conduction problem[J].Math Comput,2006,179 (9):370-377. 被引量:1
  • 6Denisov A M.Element of the theory of inverse problem[M].Utrecht:VSP BV,1999. 被引量:1
  • 7Hasanov A,Mueller J L.An umerical method for backward parabolic with non-selfadjoint elliptic operators[J].Applied Numerical Mathematics,2001,37(13):55-58. 被引量:1
  • 8Elden L.Time discretization in the backward solution of parabolic equation[J].Math Comp,1982,39(11):53-68. 被引量:1
  • 9叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999.. 被引量:33
  • 10Ndayirinde I,et al.New special solutions of the brusselator reaction model[J].Phys.A:Math.Gen,1997(30)5151-5157. 被引量:1

共引文献4

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部