期刊文献+

移动机器人路径规划免疫网络算法研究 被引量:1

Immune Network Algorithm for Mobile Robot Path Planning
下载PDF
导出
摘要 针对传统移动机器人路径规划方法存在的不足,基于独特型免疫网络理论,提出一种改进的免疫网络算法(MINA)用于移动机器人路径规划问题.该算法采用一种新的抗体对称均匀变异成熟机制和子群稳定判定策略,减少了算法对抗体克隆规模的过于敏感性,大大降低了算法的计算量;为真正体现免疫网络动态调节机制,增加抗体的多样性,提出了一种基于抗体亲和度和浓度的选择方法.仿真实验结果表明,该算法能使移动机器人在较复杂环境下快速找到一条优化路径,与同类算法相比具有一定优越性,是一种有效的移动机器人路径规划算法. Aimed at the deficiencies of traditional mobile robots path planning methods, a modified immune network algorithm ( MINA) for mobile robot path planning based on idiotypic immune network theory is proposed in the paper. In order to overcome the shortcomings of the traditional opt-aiNet, such as the heavy computational cost and too sensitive to the clone sizes of antibody, a new antibody symmetrical mutation maturation mechanism and subpopulation stabilization determination strategy are used. In order to really embody the dynamic adjustment mechanism of immune network and maintain the diversity of population, an immune selection mechanism based on density and fitness is devised. The simulation experimental results show that the new algorithm can make the mobile robot to rapidly find the optimal path in complex environment. Compared with other algorithms, MINA has certain advantages, and is an effective mobile robot path planning algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第6期1437-1440,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61174013)资助 江苏高校优势学科建设工程项目资助
关键词 独特型免疫网络 对称变异成熟机制 移动机器人 路径规划 idiotypic immune network symmetrical mutation maturation mechanism mobile robot path planning
  • 相关文献

参考文献18

  • 1Kang, Tae-Ho, Kim, et al. Efficient online path planning algorithm for mobile robots in dynamic indoor environments[ J]. Journal of Institute of Control, Robotics and Systems, 2011,17(7): 651-658. 被引量:1
  • 2叶炜垚,王春香,杨明,王冰.基于虚拟障碍物的移动机器人路径规划方法[J].机器人,2011,33(3):273-278. 被引量:27
  • 3P6rez-D,Arpino C, Medina-Mel6ndez W, Guzman J. Fuzzy Logicbased speed planning for autonomous navigation under Velocity Field Control[ C]. Proceedings of IEEE International Conference on Mechatronics, Malaga, 2009 : 1-6. 被引量:1
  • 4Tsai C C,Huang H C, Chan C K. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigationf J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4813-4821. 被引量:1
  • 5TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 6Li H, Yang S X,Seto M L. Neural-network-based path planning for a multirobot system with moving obstacles[J]. IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(4) : 410419. 被引量:1
  • 7Cai C H, Ferrari S. Information-driven sensor path planning by approximate cell decomposition[ J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(3) : 672-689. 被引量:1
  • 8Fares J A, Valero F, Mata V. Evolutionary path planning algorithm for industrial robots [ J ]. Advanced Robotics, 2012, 26(11) : 1369-1392. 被引量:1
  • 9Samir A, Mohamed E, Reda A, et al. Artificial immune systems: models, applications, and challenges [ C ]. Proceeding of the 27th Annual ACM Symposium on Applied Computing, New York, USA, 2012; 256-258. 被引量:1
  • 10Dasgupta D, Yu S H, Fernando N. Recent advances in artificial immune systems: models and applications[ J]. Applied Soft Computing, 2011, 11(2): 1574-1587,. 被引量:1

二级参考文献10

  • 1谢建平,杨明,方辉.基于激光雷达的RTK-GPS动态性能评估[J].华中科技大学学报(自然科学版),2008,36(S1):119-121. 被引量:2
  • 2Borenstein J, Koren Y. Real-time obstacle avoidance for fact mobile robots[J]. IEEE Transactions on Systems, Man, and Cy- bernetics, 1989, 19(5): 1179-1187. 被引量:1
  • 3Borenstein J, Koren Y. The vector field histogram - Fast obsta- cle avoidance for mobile robots[J]. IEEE Journal of Robotics and Automation, 1991, 7(3): 278-288. 被引量:1
  • 4An D, Wang H. VPH: A new laser radar based obstacle avoidance method for intelligent mobile robots[C]//5th World Congress on Intelligent Control and Automation: Vol.5. Piscat- away, NJ, USA: IEEE, 2004: 4681-4685. 被引量:1
  • 5Sehestedt S, Kodagoda S, Alempijevic A, et al. Robust lane de- tection in urban environments[C]//IEEE/RSJ International Con- ference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2007: 123-128. 被引量:1
  • 6孙振平.自主驾驶汽车智能控制系统[D].长沙:国防科学技术大学,2006. 被引量:1
  • 7Ulrich I, Borenstein J. VFH+: Reliable obstacle avoidance for fast mobile robots[C]//IEEE tnternational Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1998: 1572-1577. 被引量:1
  • 8曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101. 被引量:98
  • 9李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480. 被引量:343
  • 10秦元庆,孙德宝,李宁,马强.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225. 被引量:42

共引文献51

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部