期刊文献+

调和分析与信道编解码研究

Harmonic analysis and research on channel coding and decoding
原文传递
导出
摘要 信道编码是通信系统的关键技术之一,其传统的理论工具是代数和有限域GF(p).本文在有噪信道的信道编码数学模型基础上,介绍基于调和分析的新型信道编码理论,分别应用调和分析的重要工具压缩感知与Walsh-Hadamard变换实现信道编解码和信道编码盲识别.本文综述基于调和分析的信道编码的一些基本结果并介绍最新进展,主要包括:Gilbert-Varshamov界、l1解码、RIP(restricted isometry property)条件和Walsh-Hadamard变换等. The channel coding is one of the key technologies in communication theory is based on algebra and the finite field GF(p). This paper firstly establishes systems and its traditional the mathematical model of the channel coding in noisy cases, then introduces the novel channel coding theory based on harmonic analysis and applies important tools of harmonic analysis including compressed sensing and Walsh-Hadamard transform to achieve the decoding and blind recognition of channel coding. Some elementary results and newly progress of channel coding based on harmonic analysis are surveyed including Gilbert-Varshamov bound theorem, l1 decoding, RIP condition, Walsh-Hadamard transform.
出处 《中国科学:数学》 CSCD 北大核心 2014年第5期447-456,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10931001,11371183,11271050和61003083) 中国工程物理研究院科学技术发展基金(批准号:2012B0202024和2013B0403068) 北京数学与信息交叉科学2011协同创新中心资助项目
关键词 调和分析 信道编码 压缩感知 Walsh-Hadamard 变换 harmonic analysis channel coding compressed sensing Walsh-Hadamard transform
  • 相关文献

参考文献24

  • 1万哲先.代数与编码[M].北京:科学出版社,1976,第3章.. 被引量:5
  • 2冯克勤,刘凤梅编著..代数与通信[M].北京:高等教育出版社,2005:236.
  • 3Gilbert E N. A comparison of signalling alphabets. Bell System Tech J, 1952, 31:504 522. 被引量:1
  • 4Varshamov R R. Estimate of the number of signals in error correcting codes. Dokl Acad Nauk SSSR, 1957, 117: 739-741. 被引量:1
  • 5Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52:1289-1306. 被引量:1
  • 6Cands E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete Fourier information. IEEE Trans Inform Theory, 2006, 52:489-509. 被引量:1
  • 7Cands E, Tao T. Decoding by linear programing. IEEE Trans Inform Theory, 2005, 51:4203-4215. 被引量:1
  • 8Cands E, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inform Theory, 2006, 52:5406 5425. 被引量:1
  • 9许志强.压缩感知[J].中国科学:数学,2012,42(9):865-877. 被引量:59
  • 10Baraniuk R G, Davenport M, DeVore R, et al. A simple proof of the restricted isometry property for random matrices. Constr Approx, 2008, 28:253 263. 被引量:1

二级参考文献111

  • 1邹艳,陆佩忠.关键方程的新推广[J].计算机学报,2006,29(5):711-718. 被引量:63
  • 2邹艳,陆佩忠,朱雪岭.软判决快速相关攻击新算法与应用[J].计算机研究与发展,2007,44(4):581-588. 被引量:4
  • 3Lu Pei-zhong, Shen Li, Zou Yan, and Luo Xiang-yang. Blind recognition of punctured convolutional codes[J]. Science in China Ser. F Information Sciences, 2005, 48(4): 484-498. 被引量:1
  • 4Begin G and Haccoun D. High-rate punctured convolutional codes: Structure properties and construction techniques [J]. IEEE Transactions on Communicaitons, 1989, 37(11): 1381-1385. 被引量:1
  • 5Wang Feng-hua, Huang Zhi-tao, and Zhou Yi-yu. A method for blind recognition of convolution code based euclidean algorithmiC].// IEEE International Conference on Wireless Communications. Shanghai: IEEE Press, 2007: 1414-1417. 被引量:1
  • 6Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 7Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263. 被引量:1
  • 8Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592. 被引量:1
  • 9Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509. 被引量:1
  • 10Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425. 被引量:1

共引文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部