期刊文献+

基于Logistic回归模型的三线城市道路事故数据分析 被引量:6

Traffic Accident Data Analysis of Third-class Urban Roadways Using Logistic Regression Models
下载PDF
导出
摘要 根据乌鲁木齐市2006~2010年的交通事故统计资料,分别以城市道路中9类不同的交通事故形态为因变量,从道路设施、道路环境等方面选取了9个因素作为自变量,通过二项logistic模型进行事故形态分析,建立事故形态与9个影响因素间的线性相关模型,对模型参数进行了估计,并对模型的拟合程度、可靠性进行了分析,研究了所有自变量单独/组合等不同情况下对因变量的影响。再通过多项Logistic模型对不同道路条件下,各种形态的事故发生几率进行了预测,并与实际情况进行对比,检验了模型拟合效果。 According to the statistical data of Urumqi City from 2006 to 2010 ,nine different crash types of traffic accidents on urban roadways were selected respectively as the dependent variables .Furthermore ,nine factors were select-ed as the independent variables ,in aspects of road facilities and road environment .Based on Binary Logistic Regression model ,this paper established linear correlative models between crash types and nine affecting factors ,evaluated the model parameters ,analyzed the reliability and fitting degree of the model ,and investigated the impact that different independent variables combination have on the dependent variables .The paper also predicted the risk of each crash types under various conditions by using a multi-Logistic model ,and compared the prediction with the actual cases ,and tested the fitting effi-ciency of the model used .
出处 《交通信息与安全》 2014年第2期28-33,共6页 Journal of Transport Information and Safety
基金 新疆乌鲁木齐市科学技术局项目(批准号:H101326001) 国家自然科学基金(批准号:51078270)资助
关键词 城市道路 事故形态 LOGISTIC回归模型 urban roadways crash type Logistic regression model
  • 相关文献

参考文献9

二级参考文献40

共引文献104

同被引文献40

  • 1王志如,高林源,王敏.无序多分类Logistic回归的地铁扶梯事故特征分析[J].中国安全科学学报,2020(4):114-120. 被引量:7
  • 2秦小虎,刘利,张颖.一种基于贝叶斯网络模型的交通事故预测方法[J].计算机仿真,2005,22(11):230-232. 被引量:21
  • 3Zhang G,Yau K K W, Chen G. Risk factors associ- ated with traffic violations and accident severity in China[J]. Accident Analysis & Prevention, 2013 (59) : 18-25. 被引量:1
  • 4de Ofia J, Mujalli R O,Calvo F J. Analysis of traffie accident injury severity on Spanish rural highways using Bayesian networks[J]. Aceident Analysis Prevention,2011,43(1) : 402-411. 被引量:1
  • 5Jovanovic D, Backalic T,Bacic S. The application of reliability models in traffic accident frequency analy- sis[J]. Safety Science, 2011, 49(8): 1246-1251. 被引量:1
  • 6Beshah T, Hill S. Mining road traffic accident Data to improve safety: Role of road-related factors on accident severity in ethiopia[C]//Palo Alto, Cali- fornia:The Association for the Advancement of Ar- tificial Intelligence,in cooperation with Stanford U- niversityPs Department of Computer Science, 2010, March 22-24. 被引量:1
  • 7Doherty S T,Andrey J C, MacGregor C. The situa- tional risks of young drivers: The influence of pas- sengers, time of day and day of week on accident rates[J]. Accident Analysis& Prevention, 1998, 30(1): 45-52. 被引量:1
  • 8Lloyd L K,Forster J J. Modelling trends in road ac- cident frequency-Bayesian inference for rates with uncertain exposure [J]. Computational StatisticsData Analysis, 2014,73 (1) : 189-204. 被引量:1
  • 9Pukar M M, Hajare A L,Krishnaprasad K, et al. Garenoxacin in skin and skin structure infections sustained due to road traffic accident[J]. Journal of Clinical and Diagnostic Research : JCDR, 2014,8 (6) : HD01. 被引量:1
  • 10Gobbi M, Mastinu G, Previati G. The effect of mass properties on road accident reconstruction[J]. In- ternational Journal of Crashworthiness, 2014, 19 (1) : 71-88. 被引量:1

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部